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1. Introduction: 
 

The broad objective of the proposed research is to develop an optimized system design and 
associated image reconstruction algorithms for a hybrid three-dimensional (3D) breast imaging 
system that combines OAT and UST. I have made excellent progress during last year in 
accomplishing the specific tasks for this project. In the past year, my research has primarily been 
focused on (i) developing time-of-flight extraction algorithms to perform USCT, (ii) developing 
image reconstruction algorithms for USCT, (iii) developing OAT algorithms (iv) accelerating 
OAT algorithm to enable 3D image reconstruction for breast imaging, (v) evaluating and 
validating algorithms by computer simulation studies and experimental phantom studies.  
 
2. Keywords: 
 
Ultrasound imaging, optoacoustic imaging, photoacoustic imaging, iterative image 
reconstruction, nonlinear optimization, breast imaging, GPU acceleration 
 
3. Overall Project Summary 
 
Task 1: Construct a computational model of the OAT/UST imager and identify optimal 
system geometries: 
  
Computational modeling of the proposed imager:  
Imager development is based on comprehensive computer models of OAT and UST. The system 
design studies are conducted concurrently with the development of the image reconstruction 
algorithms so that they can be informed and refined jointly. 
Optimization studies: 
I have conducted numerical studies to obtain an optimal imager design. The ultrasound 
tomographic image quality depends strongly on the distribution and number of emitters and 
transducers pairs. Moreover, image quality also depends on the number of tomographic views. 
These parameters have to be carefully chosen to obtain a feasible experimental design. 
Optimization studies were performed to determine the number of emitters and tomographic 
views for a fixed receiver’s array. To obtain 3D SOS distribution, the emitters will be 
distribution on a planar surface.  
 
Task 2: Development of reconstruction methods for sparse-array 3D UST 
Reconstruction of SOS distribution:  
Iterative image reconstruction algorithms have been developed to reconstruct the SOS 
distribution. These algorithms have also been validated for experimental phantom studies. To 
perform USCT, measured time-of-flight (TOF) was extracted from the measured signals of the 
transducer elements.   
Time-of-flight (TOF) extraction of the transmission ultrasound signals: I utilized 
geometrical acoustic-based ray theory to establish a non-linear model that relates the measured 
TOF values to speed of sound (SOS) distribution. To solve this nonlinear optimization problem, 
we needed to extract time-of-flight (TOF) from the measured signal. This is a very important 
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pre-processing step for good image quality. 
In search of the best TOF extraction 
technique, six TOF extraction algorithms 
have been implemented and compared: (i) 
envelope-detection method, (ii) picking the 
max value of filtered signal, (iii) AIC-
method, (iv) weighted-AIC picker, (v) cross-
correlation method, and (vi) thresholding 
method from windowed and filtered signal 
[1]. These methods were investigated for 
both the computer simulation by adding 
different levels of noise and the experimental 
data (provided by Tomowave Laboratories 
Inc., Houston TX).   
Bent-Ray method: Algorithms are 
developed for reconstructing the SOS 
distribution of breast from knowledge of 
time-of-flight (TOF) measurements of the 
transmission ultrasound signals. Utilizing the 
geometrical acoustic-based ray theory, a non-
linear model has been established that relates the measured TOF values to the SOS distribution. 
For a given SOS distribution, numerically solution of the Eikonal equation yielded the ray paths.  
An iterative reconstruction method was developed for inverting the resulting system of equations 
that alternatively updates the estimates of the SOS and ray paths, minimizes a regularized cost 
function to obtain the final estimate of the SOS [2].  
Adjoint-State Method: I also investigated a 
partial differential equation-based Eulerian 
approach to travel-time tomography as an 
alternative approach [3].  The work on 
comparison of the Adjoint-State Method are 
Ray-tracing algorithm was presented in SPIE 
Photonics West, 2014 and SPIE Medical 
Imaging 2014. For detail implementation of 
this algorithm please see attached proceedings 
paper. The waveform inversion method for 
SOS reconstruction has also been explored in 
the group. In this regard, Adjoint-State method 
provides a suitable initial SOS distribution to 
aid waveform inversion method.    
I performed several numerical studies to 
compare bent-ray and adjoint-state method. 
Figure (1) shows the comparison of the two methods for a numerical breast phantom. This 
numerical study was performed for a ring scanner consisting of 256 transducer elements. In 
another study, I varied the tumor size and performed image reconstruction to access tumor 
detectability using adjoint-state method. Table (1) summarizes results from this study. It can be 

Tumor 
Diameter 
(mm) 

X 

(FWHM) 

(mm) 

Y 

(FWHM) 

(mm) 

SOS 
(Actual 
1600 
m/s) 

Error 

(%) 

12 12 11.75 1598.2 0.11 

10 9.75 9.5 1598.3 0.1063 

8 7.75 7.25 1603.1 -0.194 

6 7.0 6.75 1582.9 1.068 

4 6.5 6 1560.0 2.5 

Table 1: Performance of the adjoint-state method has been 
evaluated be performing many numerical simulations 
studies very varying tumor sizes. The adjoint-state method -
-- performs well for smooth SOS distributions --- can give 
accurate estimate of the size and SOS value for tumors 
ranging in 6 mm to 12 mm tumor sizes.    

 

Figure 1: (a) Numerical breast phantom; (b) image 
reconstructed using adjoint-state method; (c) image 
reconstructed using bent-ray algorithm; (d) plot 
corresponding to vertical line in (a); (e) plot corresponding 
to horizontal line in (a). To have a fair comparison between 
two methods no regularization has been used in both 
methods.  
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seen that the tumors with diameter large than 4 mm can be characterized using adjoint-state 
method.   
The method was also validated for the experimental phantom studies. In this study, the pressure 
signals were recorded using a transducer array consisting of 64 elements and a single Laser 
Induced Source placed opposite to the middle transducer. The data was recoded for 150 views. 
The experimental phantom consisted of three tubes at varying salt concentration to exhibit 
different acoustic and optical properties. Results are shown in Figure (2) for both the SOS 
distribution and optical absorbed energy density.  
 
Reconstruction of reflectivity: An algorithm has been developed to produce reflectivity maps. 
These algorithms are based on the Synthetic Transmit Aperture (STA) approach [4]. This method 
utilizes multiple elements or a single source to produce the spherical waves and the whole image 
is being reconstructed for each emitted signal. The final reflectivity map is obtained by 
accumulating these individual images. It has been shown that the STA method improves SNR. 
This method is especially useful in our current study because we are using laser induced 
ultrasound emitter (LUS), which produce spherical waves.  
 
Task 3: Ultrasound-assisted OAT image reconstruction: 
Development of imaging models and reconstruction algorithms: An interpolation-based 
discrete-discrete imaging model has been implemented to perform 3D OAT for breast imaging 
[5]. In the new implementation, an unmatched back projection (or pixel-driven) scheme has been 
used and validated in computer simulations studies. This algorithm is five times more efficient 
than the ray-driven back-projection and allows to perform iterative image reconstruction for 
large fields-of-views, making it very suitable for breast imaging. To efficiently mitigate data 
incompleteness, noise, and model error, I investigated the least-squares objective regularized by 
a TV-norm penalty. I implemented the fast iterative shrinkage/thresholding algorithm (FISTA) to 
minimize cost function with TV regularization [6].  
GPU implementation of image reconstruction algorithms: Improved GPU-based 
implementations of a numerical imaging model and its adjoint have been developed for use with 
general gradient-based iterative image reconstruction algorithms.  Particularly, two types of 
computation-reduced discretization methods have been employed; a parallel fast GPU-based 
Fourier transform (FFT) algorithm was employed to accelerate the calculation of the temporal 
convolution with ultrasonic transducer responses; and a volume-reduction method is proposed to 
reduce the computation for applications with irregular field-of-view (breast imaging). The results 
suggest that the proposed implementation is more than five times faster than previous 
implementations for a single GPU. In addition, the algorithm has also been developed to use 
multiple GPUs further reducing the computational time. The work will be presented in SPIE 
Photonics West, 2015. 

Figure 2: (a) Delta-TOF for the experimental three-tube phantom; (b) 
USCT image reconstructed using adjoint-state method; (c) OAT image 
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Task 4: Validate prototype imager and image reconstruction algorithms  
Phantom imaging studies: The imager and 
algorithm designs have been informed and 
evaluated by use of experimental studies for 
well-characterized multi-modality phantoms 
conducted at TomoWave Laboratories under 
Dr. Oraevsky. We used phantoms that have 
tumors located at different depths and have 
different optical absorption properties to 
quantify the sensitivity of the OAT system. 
Simplified versions of the phantoms will be 
imaged for characterizing the spatially 
variant spatial resolution and noise properties 
of the reconstructed images.  
 
4. Key Research Accomplishments:!
Accelerating three-dimensional iterative image reconstruction algorithm: One of the key 
research accomplishment was the successful development of accelerated iterative image 
reconstruction algorithm for 3D OAT imaging. The task to perform 3D OAT breast imaging 
presents many challenges. One 
of the challenge is to account 
for large field-of-view. In a 
typical study, image 
reconstruction volume is 120 x 
120 x 90 mm3 and the existing 
iterative image-reconstruction 
algorithms present non-practical 
image reconstruction durations 
(days to obtain a single high-
resolution image). Analytical 
algorithms, are efficient e.g. 
filter-back project (FBP), cannot 
account for data inconsistencies, 
model error, and noise in the 
data. This makes the accelerated 
image reconstruction algorithm very important milestone of the proposed project and will also 
benefit the optoacoustic tomography research field. Figure (4) shows results for a numerical 
phantom study for the accelerated interpolation-based imaging model.  
 
5. Conclusion 
I will continue to improve efficiency and accuracy of the reconstruction algorithms for USCT 
and OAT to perform breast imaging. Algorithms to reconstruct attenuation will also be 
developed. I will perform image reconstruction for clinical studies as soon as clinical data 
becomes available and will use the experimental study to investigate and improve the imaging 

Figure 3: (a) LOUIS-3DB imaging module, (b) 3D rendered 
reconstructed image from experimental phantom study. The 
image is obtained using accelerated iterative image 
reconstruction algorithm. Both tumor inserts and blood vessel 
phantom are clearly visible in the reconstructed image. 

Figure 4: Slices for (a) original phantom  (b) reconstructed image using the 
original interpolation-based algorithm with matched back projection 
scheme; (c) reconstruction image using accelerated algorithm, which is 20-
times faster and exhibits same image quality; (d) line plot corresponding to 
vertical line in (a); (e) profile for horizontal line in (a) for (a) (solid line), (b) 
(dashed line) and (c) (dotted line) respectively. 
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algorithms and imager design. Future studies will also be focused on developing task-based 
optimization studies for OAT and USCT next generation imager design. I will also develop 
algorithms to perform USCT-assisted OAT imaging.   
 
6. Publications, Abstracts, and Presentations 
1a. Waveform Inversion with Source Encoding for Breast Speed-of-Sound Reconstruction in 
Ultrasound Computed Tomography (submitted) 
Authors: Kun Wang, Thomas Mathew, Fatima Anis, Cuiping Li, Neb Duric, and Mark Anastasio 
Journal: IEEE Transaction on Medical Imaging 
 
1b*.  Investigation of the adjoint-state method for ultrasound computed tomography: a numerical 
and experimental study  
Authors: Fatima Anis, Yang Lou, Andre Conjusteau, Sergey Ermilov, Alexander Oraevsky and 
Mark A. Anastasio 
Conference: SPIE Photonics West- 2014, San Francisco CA 
 
2b- Investigation of a method for laser-induced ultrasound tomography that eliminates the need 
for ray-tracing 
Authors: Fatima Anis, Yang Lou, Andre Conjusteau, Sergey Ermilov, 
Alexander Oraevsky and Mark A. Anastasio 
Conference: SPIE Medical Physics- 2014, San Diego CA 
 
3b- Title: Accelerated iterative image reconstruction in three-dimensional optoacoustic 
tomography  
Authors: Fatima Anis, Yang Lou, Kun Wang, Richard Su, Tanmayi Oruganti, Andre 
Conjusteau, Sergey Ermilov, Alexander A. Oraevsky and Mark A. Anastasio 
Conference: SPIE Photonics West, 2015 
 
4b- Title: Waveform Inversion with Source Encoding for Breast Speed-of-Sound Reconstruction 
in Ultrasound Computed Tomography  
Authors: Kun Wang, Thomas Mathew, Fatima Anis, Cuiping Li, Neb Duric, and Mark 
Anastasio 
Conference: SPIE Medical Physics, 2015 
 
7. Training 
The year has been very fruitful as I continue to benefit from many scholarly activities and kept 
adding to my skills as imaging scientist.  

1- Attending course (E62 BME 500 67): In Fall 2014, I participated in BME course on the 
imaging science. The class held weekly for two hours. Some of the study topics included 
continuous and discrete object representations, imaging operators, image statistics, 
imaging quality assessment, ideal observer, Hotelling observers and imaging errors. The 
course provided me with a formal training as biomedical image scientist. 
 

2- Conferences:  
i- SPIE Photonics West, 2014 San Francisco CA: The conference is the major 
international meeting held annually for the optoacoustic/photoacpustic imaging. I 
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attended this meeting and was greatly benefited from the presentation and poster sessions 
as well as constructive meetings with the Prof. Oraevsky and his team about the hybrid 
OAT/ USCT breast imager.  

 
ii- SPIE Medical Imaging, 2014, San Diago CA: This conference is another major 
international conference, which holds annually and covers broad range of topics 
concerning medical imaging and diagnostics.  I was specially benefited from many talks 
and poster presentations about the image quality assessment. Moreover, the dedicated 
Ultrasonic Imaging and Tomography sessions on ultrasound imaging provided me with a 
great opportunity to learn about ultrasound tomography in medical imaging.  

3- Visiting TomoWave Inc, Houston TX:  
I visited TomoWave Inc. in December 2013. During the visit, I benefited from lab tours 
and learned about practical aspects of OAT/USCT imaging.  
 

4- Algorithm development and GPU computing: I continued to establish more skills 
towards algorithm development. One of the major achievements towards this end was to 
learn CUDA programming from other group members. This training will continue to 
benefit me through the remainder of the project.  
 

8.  Reportable Outcomes 
Nothing to report 

 
9.  Other Achievements 
Nothing to report 
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11. Appendices 
1- Manuscript: “Waveform Inversion with Source Encoding for Breast Speed-of-Sound 
Reconstruction in Ultrasound Computed Tomography”  
2- Abstract submitted for the poster presentation in SPIE Photonics West, 2014 
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3- Conference Proceedings, SPIE Photonics West, 2014 
4- Abstract submitted for the poster presentation in SPIE Medical Imaging, 2014 
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ABSTRACT   

 
In this work, we investigate a novel reconstruction method for laser-induced 
ultrasound tomography (UST) breast imaging that circumvents limitations of 
existing methods that rely on ray-tracing.  There is currently great interest in 
developing hybrid imaging systems that combine optoacoustic tomography 
(OAT) and UST.  There are two primary motivations for this: (1) the speed-
of-sound (SOS) distribution reconstructed by UST can provide 
complementary diagnostic information; and (2) the reconstructed SOS 
distribution can be incorporated in the OAT reconstruction algorithm to 
improve OAT image quality. However, image reconstruction in UST 
remains challenging.   The majority of existing approaches for UST breast 
imaging involve ray-tracing to establish the imaging operator.  This process 
is cumbersome and can lead to severe inaccuracies in the reconstructed SOS 
images in the presence of multiple ray-paths and/or shadow zones. 
 
To circumvent these problems, we implemented a partial differential 
equation-based Eulerian approach to UST that was proposed in the 
mathematics literature but never investigated for medical imaging 
applications.   This method operates by directly inverting the Eikonal 
equation without ray-tracing. A numerical implementation of this method 
was developed and systematically compared to existing reconstruction 
methods for UST breast imaging.  We demonstrated the ability of the new 
method to reconstruct accurate SOS maps from TOF data obtained by a 3D 
hybrid OAT/UST imager built by our team.  
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ABSTRACT

In this work, we investigate a novel reconstruction method for laser-induced ultrasound computed tomography
(USCT) breast imaging that circumvents limitations of existing methods that rely on ray-tracing. There is
currently great interest in developing hybrid imaging systems that combine optoacoustic tomography (OAT) and
USCT. There are two primary motivations for this: (1) the speed-of-sound (SOS) distribution reconstructed by
USCT can provide complementary diagnostic information; and (2) the reconstructed SOS distribution can be
incorporated in the OAT reconstruction algorithm to improve OAT image quality. However, image reconstruction
in USCT remains challenging. The majority of existing approaches for USCT breast imaging involve ray-
tracing to establish the imaging operator. This process is cumbersome and can lead to inaccuracies in the
reconstructed SOS images in the presence of multiple ray-paths and/or shadow zones. To circumvent these
problems, we implemented a partial differential equation-based Eulerian approach to USCT that was proposed
in the mathematics literature but never investigated for medical imaging applications. This method operates
by directly inverting the Eikonal equation without ray-tracing. A numerical implementation of this method was
developed and compared to existing reconstruction methods for USCT breast imaging. We demonstrated the
ability of the new method to reconstruct SOS maps from TOF data obtained by a hybrid OAT/USCT imager
built by our team.

Keywords: ultrasound tomography, optoacoustic tomography, photoacoustic tomography, breast cancer imag-
ing

1. INTRODUCTION

Transmission ultrasound computed tomography (USCT) is an emerging imaging modality with many biomedical
applications. USCT can be employed to retrieve anatomical information of tissues e. g. speed of sound, acoustical
impedance and reflectivity. The effectiveness of USCT in tumor detection has been discussed in recent studies.1–3

It is known that cancerous tissues have higher SOS values compared to the benign fatty masses and healthy
breast tissues. A clinical ultrasound ring array scanner for breast cancer diagnosis (Computed Ultrasound Risk
Evaluation (CURE)) has been proposed.1, 2 This system consists of 256 transducer elements distributed on
a ring with a 20 cm diameter. Another prototype has also been developed by SoftVue and consists of 2048
transducers.4 The system is capable of reconstructing a series of 2D slices of the SOS, acoustic attenuation, and
reflectivity distributions. Techniscan (Salt Lake City UT) introduced a commercial USCT system that employs
three transducer probes placed around the breast. The transducer system is mechanically rotated to reconstruct
2D slices and subsequently vertically scanned to capture multiple slices to obtain 3D images.5 Finally, an
ultrasound imaging module capable of generating three-dimensional SOS distributions has been investigated by
researchers at the Karlsruhe Institute of Technology (KIT), Germany.6

Biomedical applications of USCT commonly employ geometrical acoustics models and require time-of-flight
(TOF) measurements. TOF data that have been recorded for many source-receiver pairs can be employed for
reconstruction of the SOS distribution. The reconstruction of the speed of sound distribution is conventionally
performed by using ray-tracing (RT) methods.1, 2, 7, 8 To account for the curvature of the ray paths, the rays are

(Send correspondence to F. Anis)
Fatima Anis: E-mail: fatimaanis@seas.wustl.edu, Telephone: 1 314 935 9403

Photons Plus Ultrasound: Imaging and Sensing 2014, edited by Alexander A. Oraevsky, Lihong V. Wang, 
Proc. of SPIE Vol. 8943, 894337 · © 2014 SPIE · CCC code: 1605-7422/14/$18 · doi: 10.1117/12.2042636
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traced along the negative gradient of the TOF distribution.8 Ray-tracing can become cumbersome, especially
for three-dimensional USCT. Moreover, unlike X-ray computed tomography, the heterogeneous SOS distribution
results in uneven ray-distributions, which makes the inverse problem ill-conditioned. In this work, we will
investigate a different approach for SOS image reconstruction. This method, the adjoint state (AS) method, has
previously been employed for seismic tomography.9, 10 We are investigating the AS method for USCT for the
first time for biomedical applications.

2. DESCRIPTION OF NUMERICAL STUDIES

To perform USCT using RT, we have employed the the geometrical ray theory for sound waves. This approxi-
mation results in a non-linear model, the eikonal equation, to relate the measured TOF values to the speed of
sound distribution as

|∇T (r)| =
1

c(r)
. (1)

In Eq. (1), ∇T is the gradient of the TOF, T , and c is the SOS distribution, both of which are a function of
position as denoted by the position vector r ∈ R2. Currently, the bent-ray reconstruction is a widely employed
reconstruction technique for USCT because it incorporates refraction during sound wave propagation. The
eikonal equation is solved numerically by finite difference methods11 to obtain a TOF map for a given source
corresponding to a certain speed of sound map c(r).

2.1 Ray-tracing reconstruction method

In RT methods, the TOF is calculated as the line-integral over the slowness distribution over the ray-path
connecting the source and the receiver location:

T (r) =

∫
Γ(c)

1

c(r)
. (2)

The dependence of the ray-path, Γ(c), on the SOS distribution makes it a non-linear problem. The discretized
imaging model is given by

T = H(c)
1

c
, (3)

where T is a vector of TOF measurments, c is a finite-dimensional representation of the SOS, and H(c) is the
system matrix. To formulateH(c), we implemented a RT method. Weights were assigned to pixels in the discrete
SOS map based on the number of times each pixel was intersected by the rays. This weight matrix constitutes
H(c).

To estimate the SOS distribution from the measured TOF data, we solved the following optimization problem:

ĉ = argmin
c

∥ T−T∗ ∥2 +νg(c), (4)

where ĉ denotes the sought-after estimate of the the SOS distribution, T∗ is the measured TOF data from
all source-transducer pairs, g(c) is a penalty function, ν is a regularization parameter, and T is the computed
TOF found by solving (1). To minimize Eq. (4) we used the Limited BFGS method.12 In solving the nonlinear
optimization problem, we evaluated the gradient of Eq. (4) as

∇c = 2H(c)T [H(c)c −T∗] + ν∇g(c). (5)

It should be noted from the above equation that the first term is a linear approximation of the true non-linear
gradient of the objective function. The above linearized gradient is primarily used in USCT for biomedical
applications.
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2.2 Adjoint-state-based reconstruction method

We implemented a previously proposed algorithm for USCT reconstructed based on the adjoint-state method.9

The mismatch energy functional between the measured and simulated data is defined as9

E[c(r)] =
1

2

∫
S

|T (r)− T ∗(r)|2dΩ, (6)

where T ∗|S is the measured TOF and T |S is computed by solving Eq. (1). The quantity in Eq. (6) — the
energy functional — measures the L2-difference between the the solution of the eikonal equation, T , and the
experimental measurement, T ∗, on the measurement surface S . Using the adjoint-state method for a small
perturbation ϵc̃ to c, the gradient of the energy is defined:

δE = ϵ

∫
V

c̃(r)λ(r)

c3(r)
dΩ (7)

Here, V is volume enclosed the measurement surface S and λ(r) is the adjoint function to T (r) that satisfies the
following adjoint equation:

∇ · [λ(r)∇T (r)] = 0 (8)

with the boundary condition,

[n ·∇T (r)]λ(r)|S = [T ∗(r)− T (r)]S . (9)

Here n is the unit outward normal of the surface S . To minimize the energy using the method of gradient
descent, a perturbation c̃(r) = −λ(r)/c3(r) is defined. This leads to

δE = −ϵ

∫
V

c̃2(r)dΩ ≤ 0, (10)

where V denotes the region interior to S. By solving Eqs. (8) and (9), the update, c̃(r), to the SOS distribution
can be computed. Specifically, the SOS distribution is updated at each step as:

ck+1 = ck + ϵk c̃k (11)

until a convergence criterion is reached. The following two conditions are required of the SOS distribution:
(i) c̃k|S = 0 and (ii) ck+1 is smooth. To fulfill (ii), a regularization term similar to the one used in Eq. (4)
was included. The filtering scheme defined in Lueng’s work9 was also implemeted. The step size, ϵk, can be
determined by using the Armijo-Golstein rule or by simply setting ϵk = ϵ. The update scheme described in
Eq. (11) takes a large number of iterations to converge. Therefore, we used the limited-memory Broydon-
Fletcher Goldfarb-Shanno (L-BFGS) method to solve for this nonlinear optimization problem. We solved the
adjoint-state equation (8) using the fast-sweeping method9 with the boundary conditions defined in Eq. (9).

2.3 Experimental Setup

The experimental setup consists of a single laser ultrasound (LU) source and a 64 transducer elements arranged
in an arc. The array aperture spans a 152 degree arc with a radius of 65 mm. The imaging module is mounted
and centered on a rotational stage operated by a stepper motor, which is used to obtain TOF measurement for
150 views. The distance between the central element of the arc array and the LU source is 130 mm. Optoacoustic
imaging was concurrently performed. More detail about the LU sources and the transducer array can be found
elsewhere.13, 14
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Figure 1. (a) Speed of sound distribution for the phantom; reconstructed SOS distribution for the RT method (b) and for
the AS method (c).

3. RESULTS AND DISCUSSION

Computer-simulation studies were conducted to compare the RT method with the AS method. In this study, the
objective function did not include a penalty and least squares estimates of the SOS distributions were computed.
The two-dimensional phantom depicting the SOS distribution is shown in Figure 1(a). The phantom consists
of three discs of 4.72 mm diameter with constant SOS of 1.48, 1.6 and 1.7 mm/µs, respectively. The pressure
data were generated using the k-Wave software package15 with a geometry and acoustic properties consistent
with our experimental system design. Gaussian white noise was added to the calculated pressure signal to obtain
experimentally-relevant SNRs. Figures 1(b) and 1(c) show the reconstructed SOS distribution for the RT method
and the AS method, respectively. In the case of the RT method, streak artifacts are very visible as compared to
the AS method. All three structures can be seen in the AS reconstruction of the SOS distribution. The results
show that the AS method can be successfully used to perform USCT for biomedical applications.

To check the accuracy of the reconstructed SOS distribution, we selected 2 mm x 2mm regions at different
locations and calculated the avaeraged SOS and standard deviation in those region. The location of the five
regions is shown in Fig.2(a). The bar plot in Fig.2(b) shows the averaged SOS values for both the RT and AS
method. It can be seen that AS gives accurate SOS values for the selected regions. The maximum standard
deviation was 0.0226 mm/µs for region ”A”.

Finally, we studied the use of the AS method to perform SOS image reconstruction for the experimentally
measured TOF from our LU system. The experimental phantom consists of three tubes each with a 4.72 mm
internal diameter. Tubes were filled with water at different salt concentrations to induce different SOS values
and CuSO4 was added to provide optical contrast. For this case, concurrent optoacoustic (OA) and ultrasonic
data acquisition was performed. The OA reconstruction of the phantom is shown in Fig. 3(a) and the SOS
reconstruction is shown in Fig. 3(b). The SOS image was found via the AS reconstruction method. Once again,
all three discs are visible in the reconstructed SOS distribution.
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Figure 2. (a) Speed of sound distribution for the phantom with the marked location of five regions; (b) bar plot for the
averaged SOS values in five regions for phantom, AS method, and RT method.
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Figure 3. (a) Optoacoustic image of three tubes; (b) reconstructed SOS distribution using the AS method.

4. SUMMARY

The adjoint state method has been implemented for biomedical applications of USCT. Images reconstructed from
both simulation studies and measured TOF data were presented. Ray tracing becomes much more cumbersome
for three-dimensional USCT. Consequently, the adjoint state method holds great promise for that application.
Further numerical studies will also be performed to quantify resolution and noise propagation in the adjoint state
method.
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Abstract

Our work introduces an ultrasound tomography (UST) reconstruction algorithm based on the adjoint method
for medical imaging. This method improves current ray-tracing based UST reconstruction algorithm and has
been previously applied to seismic travel-time tomography [S. Leung and J. Qian, Comm. Math. Sci. 4
(2006)]. Ultrasound tomography has received wide attention for its ability to help breast cancer diagnosis
both by providing speed of sound and attenuation information, as well as providing adjunct imaging data for
optoacoustic tomography (OAT). Current image reconstruction algorithms for UST are usually based on ray-
tracing and gradient methods. Our investigation shows two drawbacks of these methods that lead to inaccuracy
in image reconstruction. First, ray bending in ray-tracing will cause an uneven distribution of ray paths. This
will lead to insu�cient updates in shadow zones (regions covered by few ray paths) and cause artifacts. While
this e↵ect can be compensated by regularization to some extent, we show that it cannot be avoided completely
in ray-tracing methods. Second, often, a linear approximation of the gradient objective function is used, which
also introduces errors into the gradient descent optimization method. We will demonstrate that using the adjoint
method to directly compute the Frechet derivative of the continuous non-linear objective function can circumvent
both drawbacks of the ray-tracing method. Numerical simulations are then given to show the improvement of
our method over the ray-tracing method.

1. DESCRIPTION OF PURPOSE

Transmission ultrasound tomography (UST) is an emerging modality that has a spectrum of biomedical ap-
plications. The transmitted ultrasound signal carries anatomical information about the object, e. g. speed of
sound, acoustical impedance and reflectivity. Biomedical applications of UST commonly employ geometrical
acoustics models and require time-of-flight (TOF) measurements. TOF data that have been recorded for many
source-receiver pairs can be employed for reconstruction of the speed-of-sound (SOS) distribution.

We will present a comparison of two di↵erent algorithms for the accuracy and e�ciency to perform ultrasound
computed tomography. One of the methods has widely been utilized for the medical applications of ultrasound
tomography. In this ray-tracing method [Manohar, et. al., Appl. Phys. Lett. 131911, 2007], the eikonal equation
is solved and a system matrix is formulated using the ray paths traced from the receivers locations to the source
locations. The other method, the adjoint -state method [S. Leung and J. Qian, Comm. Math. Sci. 4 (2006)],
eliminates the need to calculate ray paths and the descent direction is calculated by solving the adjoint state
equation.

(Send correspondence to Mark A. Anastasio)
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2. METHODS

To perform UST, we have used the the geometrical ray theory for the sound waves. This approximation results
in a non-linear model, the eikonal equation, to relate the measured time of flight (TOF) values to the speed of
sound distribution (SOS)

|rT (r)| = 1

c(r)
(1)

In Eq. (1), rT is the gradient of the travel time, T , and c is the SOS distribution, which both are a function
of position as denoted by the position vector r 2 R2. Currently, the bent-ray reconstruction is a widely used
reconstruction technique for UST because it incorporates refraction during sound wave propagation. The eikonal
equation is solved by either the Fast Marching Method or a Finite Di↵erence Method to obtain a time-of-flight
map for a given source corresponding to a certain speed of sound map c(r).

2.1 Ray-tracing-based reconstruction method

We write the optimization problem as:

ĉ = argmin
c

k T�T⇤ k2 +⌫g(c), (2)

where c is the discrete representation of the SOS distribution, ĉ is the estimate of the the SOS distribution,
T⇤ is the TOF measurement of all transducer pairs, g(c) is a regularization term dependent on the SOS, ⌫ is a
regularization parameter, and T is the computed TOF found by solving (1). Mathematically, T can be expressed
as

T = H(c)
1

c
, (3)

where H(c) is the system matrix. To formulate H(c), we implemented the ray-tracing method between each
receiver and source transducer pair. Weights were assigned to pixels in the discrete representation of the object
based on the number of times each pixel was intersected by the rays. This weight matrix constitutes H(c).
To minimize Eq. (2) we used the Limited BFGS method. In solving the nonlinear optimization problem, we
evaluated the gradient of Eq. (2) as

rc = 2H(c)T (H(c)c�T⇤) + ⌫rg(c). (4)

It should be noted from the above equation that the first term is a linear approximation of the true non-linear
gradient of the objective function. The above linearized gradient is primarily used in UST for the biomedical
applications. It is impractical to numerically calculate the true gradient of Eq. (2).

2.2 Adjoint-state-based reconstruction method

We define the mismatch energy functional between measured and simulated data as [S. Leung and J. Qian,
Comm. Math. Sci. 4 (2006)]

E[c(r)] =
1

2

Z

S
|T (r)� T ⇤(r)|2d⌦, (5)

where c is the speed of sound, T ⇤|S is the measurement, and T |S is computed by solving the eikonal equation,
Eq. (1). The quantity in Eq. (5) — the energy functional — measures the L2-di↵erence between the the solution
of the eikonal equation, T , and the experimental measurement, T ⇤, on the measurement surface S . Using the
adjoint-state method for a small perturbation ✏c̃ to c, we define the gradient of the energy:

�E = ✏

Z

S

c̃(r)�(r)

c3(r)
d⌦ (6)



Here �(r) is the adjoint variable and satisfies the following adjoint equation:

r · [�(r)rT (r)] = 0 (7)

with the boundary condition,

[n ·rT (r)]�(r)|S = [T ⇤(r)� T (r)]S . (8)

Here n is the unit outward normal of the surface S . To minimize the energy using the method of gradient descent
we choose the perturbation c̃(r) = ��(r)/c3(r). This leads to

�E = �✏

Z

S
c̃2(r)d⌦  0. (9)

By solving Eqs. (7) and (8), the update c̃(r) to the SOS distribution can be computed. Specifically, the SOS
distribution is updated at each step by:

ck+1 = ck + ✏k c̃k (10)

until a convergence criterion is reached. The following two conditions are required of the SOS distribution: (i)
c̃k|S = 0 and (ii) ck+1 is smooth. To fulfill (ii), a regularization term similar to the one used in Eq. (2) was
included. The step size, ✏k, can be determined by using Armijo-Golstein rule or by simply setting ✏k = ✏. The
update scheme described in Eq. (10) takes a large number of iterations to converge. Therefore, we used the
limited-memory Broydon-Fletcher Goldfarb-Shanno (L-BFGS) method to solve for this nonlinear optimization
problem.

3. RESULTS

We performed image reconstruction simulations for two di↵erent numerical phantoms using a ray-tracing method.
In one of these breast phantoms, the SOS value for the subcutaneous fat was chosen to be 1375 m/s and the
background SOS value was fixed at 1480 m/s to model a large variation in the SOS distribution. In the second
2D breast phantom, SOS value for the subcutaneous fat was chosen to be 1475 m/s and the background SOS
value was chosen to be1500 m/s to yield a sample with small contrast in the SOS distribution. We used 128
sources and 128 receivers and calculated the measured TOF data using the bent-ray method. In this case, if the
output of Eq. (4) is close to the exact gradient of the objective function, it is expected to recontrust the original
SOS distribution. The reconstructed image will be degraded for the larger variation in SOS distribution when
the linearized approximation is used to calculate r(c) given in Eq. (4).

It can clearly be seen from the Fig. (1) that image quality is degraded when the contrast in the SOS distribu-
tion becomes larger. For high contrast situations, the reconstructed image is blurred and we cannot quantitatively
recover the SOS distribution. In principle, both images will look like the numerical phantom if the gradient in
Eq. (4) is evaluated accurately. We will present results from the adjoint-state to address this issue.

4. NEW BREAKTHROUGH WORK

Our formulation for the ray-tracing method and adjoint state method will be applied for the reconstruction of
speed of sound distributions. Our focus is to compare these methods specifically for breast imaging. To achieve
this, we implemented a numerical ring scanner geometry similar to [N. Duric et. al., Med. Phys. 34(2), 773
(2007)]. We will present the comparison for a numerical breast phantom comprised of a distribution of malignant,
cystic, and fatty masses in the region of glandular tissue inside a ring of subcutaneous fat tissue. Moreover, we
will also present the comparison study for a numerical phantom of SOS distribution synthesized from a slice
through an MRI of a breast. The comparison between these method will be quantified by assessing the quality
of images using some quantitative physical tests e.g. least-square error, resolution.



Figure 1: Comparison of the SOS image reconstruction for two di↵erent phantoms. The true phantoms are
shown in the left column. The top phantom has a larger variation in the speed-of-sound values. The middle
column of images shows the images reconstructed by use of the bent-ray model, with the corresponding image
profiles displayed in the right column.

5. CONCLUSION

This study demonstrates the use of the adjoint-state method for ultrasound imaging. The ray-tracing method
has primarily been used in ultrasound computed tomography, but is cumbersome and prevents the accurate
calculation of the gradient of the cost function. By use of the adjoint method, the gradient is calculated accurately
and improved reconstructions of an object’s speed of sound distribution can be obtained.
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ABSTRACT   

Optoacoustic tomography (OAT), also known as photoacoustic computed 
tomography, has found many biomedical applications.  Because they can 
model complicated imaging physics, compensate for imperfect data 
acquisition systems, and exploit prior information regarding the object, 
iterative image reconstruction algorithms, in general, produce higher quality 
images than do analytical image reconstruction algorithms.  However, three-
dimensional (3D) iterative image reconstruction is computationally 
burdensome. Even with graphics processing unit (GPU)-accelerated 
implementations, to our knowledge, it still takes at least five hours to 
reconstruct the 3D volume of a whole-body mouse.  This computational 
burden greatly hinders the application of advanced image reconstruction 
algorithms to applications with a large field-of-view (FOV), such as breast 
imaging. 
 
In this study, an improved GPU-based implementation of a numerical 
imaging model and its adjoint have been developed for use with general 
gradient-based iterative image reconstruction algorithms.  Particularly, two 
types of computation-reduced discretization methods are employed; a 
parallel fast Fourier transform (FFT) algorithm is employed to accelerate the 
calculation of the temporal convolution with ultrasonic transducer responses; 
and a volume-reduction method is proposed to reduce the computation for 
applications with irregular FOV.  Both computer-simulation and 
experimental studies are conducted to investigate the efficiency and 
accuracy of the proposed implementation.  The results suggest that the 
proposed implementation is more than five times faster than previous 
implementations.  Using the proposed implementation, a 3D whole-body 
mouse image can be reconstructed in less than one hour.  The developed 



algorithm is also evaluated for 3D OAT breast imaging with sub millimeter 
resolution.  
 
Keywords: Optoacoustic tomography, iterative image reconstruction, GPU 
acceleration, unmatched backprojection 
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ABSTRACT

Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of
breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction
methods can produce images that possess improved spatial resolution properties over those produced by ray-
based methods. However, waveform inversion methods are computationally demanding and have not been applied
widely in USCT breast imaging. A computationally efficient numerical wave equation solver has been reported
based on a modified Fresnel propagation, which only applies to USCT systems with a planar incident wave. For
breast imaging systems with a spherical incident wave, waveform inversion-based reconstruction methods remain
computationally challenging.

In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method
that circumvents the large computational burden of conventional waveform inversion methods. This method,
referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data
using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a
stochastic optimization problem by use of a stochastic gradient descent algorithm. For practical applications, a
data-filling strategy is proposed to mitigate source inferences to its neighbor receivers. Computer-simulation and
experimental phantom studies are conducted to demonstrate the use of the WISE method. Using a single graphics
processing unit card, each iteration can be completed within 25 seconds for a 128×128 mm2 reconstruction region.
The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods
while significantly reducing the computational burden.

1. PURPOSE

This study is focused on the image reconstruction of breast speed-of-sound (SOS) distribution in USCT. The
majority of USCT image reconstruction methods for breast imaging investigated to date have been based on
approximations to the acoustic wave equation.1, 2 A relatively popular class of methods is based on geometrical
acoustics. They are commonly referred to as ‘ray-based’ methods. Although ray-based methods can be compu-
tationally efficient, the spatial resoultion of the images they produce is limited due to the fact that diffraction
effects are not modelled.3, 4 This is undesirable for breast imaging applications, in which the ability to resolve
fine features, e.g., tumor spiculations, is important for distinguishing healthy from diseased tissues.

USCT reconstruction methods based on the acoustic wave equation, also known as full-wave inverse scattering
or waveform inversion methods, have also been explored for a variety of applications including medical imaging.4–7

Because they account for higher-order diffraction effects, waveform inversion methods can produce images that
possess higher spatial resolution properties than those produced by ray-based methods.4, 5 However, conventional
waveform inversion methods are iterative in nature and require the wave equation to be solved numerically a large
number of times at each iteration. Consequently, such methods can be extremely computationally burdensome.
For special geometries,7 efficient numerical wave equation solvers have been reported. However, apart from
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special cases, the large computational burden of waveform inversion methods has hindered their widespread
application.

The purpose of this study is to develop an algorithmically accelerated waveform inversion method for breast
SOS reconstruction. Aided by a graphics processing unit (GPU)-accelerated implementation, the developed
method will maintain the high spatial resolution of standard waveform inversion methods with a signifcant
reduction in computational time.

2. METHODS

A conventional waveform inversion method seeks the solution of

ĉ = argmin
c

1

2

M−1∑
m=0

∥gm − Hcsm∥2 + βR(c), (1)

where c is the sought-after object to be reconstructed, i.e, SOS distribution, gm denotes the measured data
vector, sm denotes the (known) source vector, Hc denotes a numerical wave equation solver (NWES) that
maps the known source vector to the measured data vector, and R(c) and β denote the penalty term and the
regularization parameter respectively. The superscript in Hc indicates the dependence of Hc on c. Note that one
USCT measurement involves firing a sequence of acoustic pulses in turn and recording the data corresponding to
every pulse. Each pulse-firing and data recording process will be indexed by m for m = 0, 1, · · · , M − 1. Solving
Eqn. (1), in general, requires the calculation of 1

2

∑M−1
m=0 ∇c∥gm−Hcsm∥2, where ∇c denotes the gradient operator

with respect to c. The gradient in each summand is commonly computed by use of an adjoint state method,5

which requires two runs of the NWES. Repeating the gradient calculation for all sources results in 2M runs
of the NWES at each iteration. This computational burden largely hinders the application of the conventional
waveform inversion methods in practice.

In this study, a waveform inversion with source encoding (WISE) method was developed. The WISE method
employs the objective function

ĉ = argmin
c

Ew

{1

2
∥gw − Hcsw∥2

}
+ βR(c), (2)

where Ew denotes the expectation operator with respect to the random source encoding vector w ∈ RM , and
gw and sw denote the w-encoded data and source vectors, defined as

gw =
M−1∑
m=0

[w]mgm, and sw =
M−1∑
m=0

[w]msm, (3)

respectively. Equation (2) was solved by use of a stochastic gradient descent algorithm.8 Because the stochastic
gradient descent algorithm calculated the gradient of only one realization of the random variable 1

2
∥gw−MHcsw∥2

at each iteration, the required number of NWES runs per iteration was reduced from 2M to 2. Although it, in
general, requires more algorithm iterations to average out the randomness in the realizations, the WISE method,
as demonstrated later, can greatly reduce the overall number of NWES runs. Both computer-simulation and
experimental phantom studies were conducted to demonstrate the use of the WISE method for breast SOS
reconstruction.

3. RESULTS

The images reconstructed from the computer-simulated noise-free data by use of the WISE method after 199
iterations and sequential waveform inversion method after 43 iterations are shown in Fig. 1-(a) and (b). As
expected,4, 9 both images are more accurate and possess higher spatial resolution than the one reconstructed by
use of the bent-ray reconstruction algorithm displayed in Fig. 1-(c). The images shown in Fig. 1-(a) and -(b)
possess similar accuracies as measured by their Euclidean distances from the SOS phantom vector c, namely
0.07% of ∥c∥ for the former and 0.08% of ∥c∥ for the latter. However, the reconstruction of Fig. 1-(a) required



only about 1.7% of the computational time required to reconstruct Fig. 1-(b), namely, 1.4 hours for the former
and 81.4 hours for the latter respectively. This is because the WISE method required only 1018 NWES runs,
which is signficantly less than the 58880 NWES runs required by the sequential waveform inversion method.
With a similar number of NWES runs, (e.g., 1024), one can only complete a single algorithm iteration by use
of the sequential waveform inversion method. The corresponding image, shown in Fig. 1-(d), lacks quantitative
accuracy as well as qualitative value for identifying features. The results suggest that the WISE method maintains
the advantages of the sequential waveform inversion method while significantly reducing the computational time.

2 cm

(a)

2 cm

(b)

2 cm

(c)

2 cm

(d)

Figure 1. Images reconstructed by use of (a) the WISE method after the 199-th iteration (1, 018 runs of NWES) (b) the
sequential waveform inversion algorithm after the 43-rd iteration (58, 880 runs of the NWES), (c) the bent-ray model-
based SOS reconstruction method, and (d) the sequential waveform inversion algorithm after the 1-st iteration (1, 024
runs of the NWES) from the noise-free non-attenuated data. The grayscale window is [1.46, 1.58] mm/µs.

The images reconstructed from the experimentally-measured data are shown in Fig. 2. The spatial resolution
of the image reconstructed by use of the WISE method is significantly higher than that reconstructed by use
of the bent-ray model-based method. In particular, the structures labeled ‘A’ and ‘B’ possess clearly-defined
boundaries. In addition, the structure labeled ‘Cancer’ in Fig. 2-(a) is almost indistinguishable in the image
reconstructed by use of the bent-ray model-based method (see Fig. 2-(b)). The improved spatial resolution is
expected because the WISE method takes into account the high-order diffraction effects, which are ignored by
the bent-ray method.4

(a)

2 cm

(b)

2 cm

B

C

A

(c)

Figure 2. (a) Schematic of the breast phantom employed in the experimental study. Images reconstructed from the
experimentally measured phantom data by use of (a) the bent-ray model-based SOS reconstruction method and (b) the
WISE method after the 200-th iteration. The grayscale window is [1.49, 1.57] mm/µs.

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

Source encoding concepts are demonstrated in breast USCT experimental studies for the first time. Unlike
previously studied waveform inversion methods that were based on the Helmholtz equation, the WISE method



is formulated by use of the time-domain acoustic wave equation. A GPU-accelerated NWES is developed that
can compute 1800 time samples, on a 1024× 1024 spatial grid, in 5 seconds. In addition, a data-filling strategy
is proposed to mitigate the inference of the source with its neighboring receivers for practical applications.

5. CONCLUSION

It is known that waveform inversion-based reconstruction methods can produce SOS images that possess im-
proved spatial resolution properties over those produced by ray-based methods. However, waveform inversion
methods are computationally demanding and have not been applied widely in USCT breast imaging. In this
work, based on the time-domain wave equation and motivated by recent mathematical results in the geophysics
literature, the WISE method was developed that circumvents the large computational burden of conventional
waveform inversion methods. This method encodes the measurement data using a random encoding vector and
determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use
of a stochastic gradient descent algorithm. With our current GPU-based implementation, the computation time
was reduced from weeks to hours. The WISE method was systematically investigated in computer-simulation
and experimental studies involving a breast phantom. The results suggest that the method holds value for USCT
breast imaging applications in a practical setting.

6. DISCLOSURE

This work is original. Parts of this work have been submitted to IEEE Transactions on Ultrasounics, Ferro-
electrics and Frequency Control and are under review.
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Abstract

Ultrasound computed tomography (USCT) holds great promise for improving the detection and

management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-

based reconstruction methods can produce images that possess improved spatial resolution properties

over those produced by ray-based methods. However, waveform inversion methods are computationally

demanding and have not been applied widely in USCT breast imaging. In this work, source encoding

concepts are employed to develop an accelerated USCT reconstruction method that circumvents the

large computational burden of conventional waveform inversion methods. This method, referred to as

the waveform inversion with source encoding (WISE) method, encodes the measurement data using

a random encoding vector and determines an estimate of the sound speed distribution by solving a

stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer-

simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method.

The results suggest that the WISE method maintains the high spatial resolution of waveform inversion

methods while significantly reducing the computational burden.
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I. INTRODUCTION

After decades of research [1]–[4], advancements in hardware and computing technologies

are now facilitating the clinical translation of ultrasound computed tomography (USCT) for

breast imaging applications [5]–[9]. USCT holds great potential for improving the detection and

management of breast cancer since it provides novel acoustic tissue contrasts, is radiation- and

breast-compression-free, and is relatively inexpensive. [10], [11]. Several studies have reported

the feasibility of USCT for characterizing breast tissues [4]–[7], [11], [12]. Although some USCT

systems are capable of generating three images that depict the breast’s acoustic reflectivity,

acoustic attenuation, and sound speed distributions, this study will focus on the reconstruction

of the sound speed distribution.

A variety of USCT imaging systems have been developed for breast sound speed imaging

[6], [8], [11], [13]–[16]. In a typical USCT experiment, acoustic pulses that are generated by

different transducers are employed, in turn, to insonify the breast. The resulting wavefieled data

are measured by an array of ultrasonic transducers that are located outside of the breast. Here

and throughout the manuscript, a transducer that produces an acoustic pulse will be referred

to as an emitter; the transducers that receive the resulting wavefield data will be referred to as

receivers. From the collection of recorded wavefield data, an image reconstruction method is

utilized to estimate the sound speed distribution within the breast [6], [8], [11].

The majority of USCT image reconstruction methods for breast imaging investigated to date

have been based on approximations to the acoustic wave equation [13], [17]–[24]. A relatively

popular class of methods is based on geometrical acoustics, and are commonly referred to as ‘ray-

based’ methods. These methods involve two steps. First, time-of-flight (TOF) data corresponding

to each emitter-receiver pair are estimated [25]. Under a geometrical acoustics approximation,

the TOF data are related to the sound speed distribution via an integral geometry, or ray-based,

imaging model [17], [26]. Second, by use of the measured TOF data and the ray-based imaging

model, a reconstruction algorithm is employed to estimate the sound speed distribution. Although

ray-based methods can be computationally efficient, the spatial resoultion of the images they

produce is limited due to the fact that diffraction effects are not modelled [23], [27]. This is
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undesirable for breast imaging applications, in which the ability to resolve fine features, e.g.,

tumor spiculations, is important for distinguishing healthy from diseases tissues.

USCT reconstruction methods based on the acoustic wave equation, also known as full-wave

inverse scattering or waveform inversion methods, have also been explored for a variety of

applications including medical imaging [13], [22], [23], [28] and geophysics [29]–[31]. Because

they account for higher-order diffraction effects, waveform inversion methods can produce images

that possess higher spatial resolution than those produced by ray-based methods [23], [28].

However, conventional waveform inversion methods are iterative in nature and require the wave

equation to be solved numerically a large number of times at each iteration. Consequently,

such methods can be extremely computationally burdensome. For special geometries [13], [32],

efficient numerical wave equation solvers have been reported. However, apart from special cases,

the large computational burden of waveform inversion methods has hindered their widespread

application.

A natural way to reduce the computational complexity of the reconstruction problem is to

reformulate it in a way that permits a reduction in the number of times the wave equation

needs to be solved. In the geophysics literature, source encoding methods have been proposed

to achieve this [29]–[31]. When source encoding is employed, at each iteration of a prescribed

reconstruction algorithm, all of the acoustic sources produced by the emitters are combined

(or ‘encoded’) by use of a random encoding vector; So are the measured wavefield data. As a

result, the wave equation may need to be solved as few as twice at each algorithm iteration.

In conventional waveform inversion methods, this number would be equal to twice the number

of emitters employed. Although conventional waveform inversion methods may require fewer

algorithm iterations to obtain a specified image accuracy compared to source encoded methods,

as demonstrated later, the latter can greatly reduce the overall number of times the wave equation

needs to be solved.

In this study, a waveform inversion with source encoding (WISE) method for USCT sound

speed reconstruction is developed and investigated for breast imaging with a circular transducer

array. The WISE method determines an estimate of the SOS distribution by solving a stochastic

optimization problem by use of a stochastic gradient descent algorithm [30], [33]. Unlike previ-

ously studied waveform inversion methods that were based on the Helmholtz equation [22], [23],

the WISE method is formulated by use of the time-domain acoustic wave equation [34]–[36]
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and utilizes broad-band measurements. The wave equation is solved by use of a computationally

efficient k-space numerical wave equation solver that is accelerated using graphics processing

units (GPUs). In order to mitigate the interference of the emitter on its neighboring receivers, a

heuristic data replacement strategy is proposed. The method is validated in computer-simulation

studies that include modelling errors and other physical factors. The practical applicability of

the method is further demonstrated in studies involving experimental breast phantom data.

The remainder of the paper is organized as follows. In Section II, USCT imaging models in

their continuous and discrete forms are reviewed. A conventional waveform inversion method and

the WISE method for sound speed reconstruction are formulated in Section III. The computer-

simulation studies and corresponding numerical results are presented in Sections IV and V,

respectively. In Section VI, the WISE method is further validated in experimental breast phantom

studies. Finally, the paper concludes with a discussion in Section VII.

II. BACKGROUND: USCT IMAGING MODELS

In this section, imaging models that provide the basis for image reconstruction in waveform

inversion-based USCT are reviewed in their continuous and discrete forms.

A. USCT imaging model in its continuous form

Although a digital imaging system is properly described as a continuous-to-discrete (C-D)

maping (See Chapter 7 in [37]), for simplicity, a USCT imaging system is initially described in

its continuous form below.

In USCT breast imaging, a sequence of acoustic pulses is transmitted through the breast.

We denote each acoustic pulse by sm(r, t) ∈ L2(R3 × [0,∞)), where each pulse is indexed by

an integer m for m = 0, 1, · · · ,M − 1 with M denoting the total number of acoustic pulses.

Although it is spatially localized at the emitter location, each source can be expressed as a

function of space and time. When the m-th pulse propagates through the breast, it generates a

pressure wavefield distribution denoted by pm(r, t) ∈ L2(R3× [0,∞)). If acoustic absorption and

mass density variations are negligible, pm(r, t) in an unbounded medium satisfies the acoustic

wave equation [38]:

∇2pm(r, t)−
1

c2(r)

∂2

∂t2
pm(r, t) = −4πsm(r, t), (1)
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where c(r) is the sought-after sound speed distribution. Equation (1) can be expressed in operator

form as

pm(r, t) = Hcsm(r, t), (2)

where the linear operator Hc : L2(R3×[0,∞)) #→ L2(R3×[0,∞)) denotes the action of the wave

equation and is independent of the index of m. The superscript ‘c’ indicates the dependence of

Hc on c(r).

Consider that pm(r, t) is recorded outside of the object for r ∈ Ωm and t ∈ [0, T ], where Ωm ⊂

R3 denotes a continuous measurement aperture. In this case, when discrete sampling effects are

not considered, the USCT imaging model can be described as a continuous-to-continuous (C-C)

mapping as:

gm(r, t) = MmH
csm(r, t), for m = 0, 1, · · · ,M − 1, (3)

where gm(r, t) ∈ L2(Ωm × [0, T ]) denotes the measured data function, and the operator Mm is

the restriction of Hc to Ωm× [0, T ]. Introducing the m-dependent operator Mm allows Eqn. (3)

to describe USCT imaging systems in which the measurement aperture can vary with emitter

location. Here and throughout the manuscript, we will refer to the process of firing one acoustic

pulse and acquiring the corresponding wavefield data as one data acquisition indexed by m. The

USCT reconstruction problem in its continuous form is to estimate the sound speed distribution

c(r) by use of Eqn. (3) and the data functions {gm(r, t)}
M−1
m=0 .

B. USCT imaging model in its discrete forms

A digital imaging system is accurately described by a continuous-to-discrete (C-D) imaging

model, which is typically approximated in practice by a discrete-to-discrete (D-D) imaging model

to facilitate the application of iterative image reconstruction algorithms. A C-D description of the

USCT imaging system is provided in Appendix A. Below, a D-D imaging model for waveform

inversion-based sound speed reconstruction in USCT are presented. The D-D imaging model

will be employed subsequently in the development of the WISE method in Section III.

Construction of a D-D USCT imaging model requires the introduction of a finite-dimensional

approximate representations of the functions c(r) and sm(r, t), which will be denoted by the

vectors c ∈ RN and sm ∈ RNL. Here, N and L denote the numbers of spatial and time samples

employed for wave propagation calculation respectively. In waveform-based USCT, the way in
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which c(r) and sm(r, t) are discretized to form c and sm is dictated by the numerical method

employed to solve the acoustic wave equation, referred to as a numerical solver. In this study, we

employ a numerical solver based on a pseudospectral k-space method [34]–[36]. Accordingly,

c(r) and sm(r, t) are sampled on Cartesian grid points as

[c]n = c(rn), and [sm]nL+l = sm(rn, l∆
t), for n=0,1,··· ,N−1

l=0,1,··· ,L−1 , (4)

where ∆t denotes the temporal sampling interval and rn denotes the location of the n-th point.

For a given c and sm, the pseudospectral numerical solver can be described in operator form

as

pa
m = Hcsm, (5)

where the matrix Hc is of dimension NL×NL and represents a discrete approximation of the

wave operator Hc defined in Eqn. (2), and the vector pa
m represents the estimated pressure data

at the grid point locations and has the same dimension as sm. The superscript ‘a’ indicates that

these values are approximate, i.e., [pa
m]nL+l ≈ pm(rn, l∆t). We refer the readers to [34]–[36] for

additional details regarding the pseudospectral numerical solver.

Because the pseudospectral numerical solver yields pressure data distributed over the whole

Cartesian grid, a sampling matrix Mm is introduced to model the USCT data acquisition process

as

ga
m = Mmp

a
m ≡MmH

csm, (6)

where the N recL × NL sampling matrix Mm extracts the pressure data corresponding to the

receiver locations on the measurement aperture Ωm with N rec denoting the number of receivers,

and ga
m is the predicted data vector that approximates the true measurements. When the receiver

and grid point locations do not coincide, interpolation methods are required. As an example,

when a nearest-neighbor interpolation method is employed, the elements of Mm are defined as

[Mm]nrecL+l,nL+l =

⎧

⎨

⎩

1, for n = Im(nrec),

0, otherwise,
(7)

where [Mm]nrecL+l,nL+l denotes the element of Mm at the (nrecL+ l)-th row and the (nL+ l)-th

column, and Im(nrec) denotes the index of the grid point that is closest to r(m,nrec). Here,

r(m,nrec) denotes the location of the nrec-th receiver at the m-th data acquisition. In summary,

Eqn. (6) represents the D-D imaging model that will be employed in the remainder of this study.
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Note that because of the dependence of Mm on m, a varying detection geometry among data

acquisitions can be described by use of this model.

III. WAVEFORM INVERSION WITH SOURCE ENCODING FOR USCT

A. Sequential waveform inversion in its discrete form

A conventional waveform inversion method that does not utilize source encoding will be

employed as a reference for the developed WISE method and is briefly described below. Like

other conventional approaches, this method sequentially processes the data acquisitions gm for

m = 0, 1, · · · ,M − 1 at each iteration of the associated algorithm. As such, we will refer to the

conventional method as a sequential waveform inversion method.

A sequential waveform inversion method can be formulated as a non-linear numerical opti-

mization problem:

ĉ = argmin
c

{F(c) + βR(c)}, (8)

where F(c), R(c), and β denote the data fidelity term, the penalty term, and the regularization

parameter, respectively. The data fidelty term F(c) is defined as a sum of squared ℓ2-norms of

the data residuals corresponding to all data acquisitions as:

F(c) =
1

2

M−1
∑

m=0

∥gm −MmH
csm∥

2, (9)

where gm ∈ RNrecL denotes the measured data vector at the m-th data acquisition. The choice

of the penalty term will be addressed in Section IV.

The gradient of F(c) with respect to c, denoted by J, will be computed by discretizing an

expression for the Fréchet derivative that is derived assuming a continuous form of Eqn. (9).

The Fréchet derivative is described in Appendix B. Namely, the gradient is approximated as

[J]n ≡
M−1
∑

m=0

[Jm]n ≈
1

[c]3n

M−1
∑

m=0

L−2
∑

l=1

[qa
m]nL+(L−l)

[pa
m]nL+l−1 − 2[pa

m]nL+l + [pa
m]nL+l+1

∆t
, (10)

where Jm denotes the gradient of 1
2∥gm −MmH

csm∥2 with respect to c and the vector qa
m

contains samples that approximate adjoint wavefield qm(r, t) that satisfies Eqn. (33) in Appendix

B. By use of the pseudospectral numerical solver, qa
m can be calculated by

qa
m =

1

4π
Hc

τm, (11)
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where

[τm]nL+l =

⎧

⎨

⎩

[ga
m − gm]I−1

m (n)L+(L−l), if n ∈ Nm,

0, otherwise
. (12)

Here, Nm = {n : Im(nrec), nrec = 0, 1, · · · , N rec − 1}, and I−1
m denotes the inverse mapping of

Im.

Given the explicit form of J in Eqn. (10), a variety of optimization algorithms can be employed

to solve Eqn. (8) [39]. When a gradient descent algorithm is employed, the sequential waveform

inversion method is given by Algorithm 1, where in Line-10, JR denotes the gradient of R(c)

with respect to c.

Algorithm 1 Gradient descent-based sequential waveform inversion.

Input: {gm}, {sm}, c(0)

Output: ĉ

1: k ← 0 {k is the number of algorithm iteration.}

2: while stopping criterion is not satisfied do

3: k ← k + 1

4: J← 0

5: for m := 0 to M − 1 do

6: pa
m ← Hcsm {m is the index of the emitter.}

7: qa
m ← Hc

τm {τm is calculated via Eqn. (12).}

8: J← J+ Jm {Jm is calculated via Eqn. (10).}

9: end for

10: J← J+ βJR

11: Determine step size λ via a line search

12: c(k) ← c(k−1) − λJ

13: end while

14: ĉ = c(k)

In Algorithm 1, Hc is the most computationally burdensome operator, representing one run

of the numerical solver. Note that it appears in Lines-6, -7, and -11. Because Lines-6 and -7

have to be executed M times to process all of the data acquisitions, the numerical solver has
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to be executed at least (2M + 1) times at each algorithm iteration. The line search in Line-11

searches for a step size along the direction of −J so that the cost function is reduced by use of a

classic trial-and-error approach [39]. Note that, in general, the line search will require more than

one application of Hc, so (2M + 1) represents a lower bound on the total number of numerical

solver runs per iteration.

B. Stochastic optimization-based waveform inversion with source encoding (WISE)

In order to alleviate the large computational burden presented by sequential waveform inversion

methods (e.g., Algorithm 1), a source encoding method has been proposed [22], [29], [40]. This

method has been formulated as a stochastic optimization problem and solved by various stochastic

gradient-based algorithms [30], [31]. In this section, we adapt the stochastic optimization-based

formulation in [30] to find the solution of Eqn. (8).

The WISE method employs the same cost function given in Eqn. (8) except that the data

fidelity term in Eqn. (9) is reformulated as the expectation of a random quantity as [29]–[31],

Algorithm 2 Waveform inversion with source encoding (WISE) algorithm.

Input: {gm}, {sm}, c(0)

Output: ĉ

1: k ← 0 {k is the number of algorithm iteration}

2: while stopping criterion is not satisfied do

3: k ← k + 1

4: Draw elements of w from independent and identical Rademacher distribution.

5: pw ← Hcsw {sw is calculated via Eqn. (14). }

6: qw ← Hc
τ
w {See text for the calculation of τw}

7: J← Jw + βJR {Jw is calculated via Eqn. (16)}

8: Determine step size λ by use of line search

9: c(k) ← c(k−1) − λJw

10: end while

11: ĉ = c(k)
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[33], [40], [41]

Fs(c) = Ew

{1

2
∥gw −MHcsw∥2

}

, (13)

where Ew denotes the expectation operator with respect to the random source encoding vector

w ∈ RM , M ≡Mm is the sampling matrix that is assumed to be identical for m = 0, 1, · · · ,M−

1, and gw and sw denote the w-encoded data and source vectors, defined as

gw =

M−1
∑

m=0

[w]mgm, and sw =

M−1
∑

m=0

[w]msm, (14)

respectively. It has been demonstrated that Eqns. (9) and (13) are mathematically equivalent

when w possesses a zero mean and an identity covariance matrix [30], [33], [41]. In this case,

the optimization problem whose solution specifies the sound speed estimate can be re-expressed

in a stochastic framework as

ĉ = argmin
c

Ew

{1

2
∥gw −MHcsw∥2

}

+ βR(c), (15)

which we refer to as the waveform inversion with source encoding (WISE) method. An im-

plementation of the WISE method that utilizes the stochastic gradient descent algorithm is

summarized in Algorithm 2.

In Algorithm 2, the numerical solver needs to be run one time in each of Lines 5 and 6. In

the line search to determine the step size in Line 8, the numerical solver needs to be run at least

one time, but in general will require a small number of additional runs, just as in Algorithm 1.

Accordingly, the lower bound on the number of required numerical solver runs per iteration is 3,

as opposed to (2M+1) for the conventional sequential waveform inversion method described by

Algorithm 1. As demonstrated in geophysics applications [29], [31], [40] and the breast imaging

studies below, the WISE method provides a substantial reduction in reconstruction times over

use of the standard sequential waveform inversion method. In Line-7, Jw can be calculated

analogously to Eqn. (10) as

[Jw]n ≈
1

[c]3n

L−2
∑

l=1

[qw]nL+(L−l)
[pw]nL+l−1 − 2[pw]nL+l + [pw]nL+l+1

∆t
, (16)

where pw = Hcsw and qw = Hc
τ
w. Various probablity density functions have been proposed

to describe the random vector w [29], [31], [40]. In this study, we employed a Rademacher

distribution as suggested by [29], in which case each element of w had a 50% chance of being

either +1 or −1.
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IV. DESCRIPTION OF COMPUTER-SIMULATION STUDIES

Two-dimensional computer-simulation studies were conducted to validate the WISE method

for breast sound speed imaging and demonstrate its computational advantage over the standard

sequential waveform inversion method.

A. Measurement geometry

A circular measurement geometry was chosen to emulate a previously reported USCT breast

imaging system [11], [23], [42]. As sketched in Fig. 1, 256 ultrasonic transducers were uniformly

distributed on a ring of radius Rs = 110 mm. The generation of one USCT data set consisted

of M = 256 sequential data acquisitions. In each data acquisition, one emitter produced an

acoustic pulse. The acoustic pulse was numerically propagated through the breast phantom and

the resulting wavefield data were recorded by all transducers in the array as described below.

Note that the location of the emitter in every data acquisition was different from those in other

acquisitions, while the locations of receivers were identical for all acquisitions.

B. Numerical breast phantom

A numerical breast phantom of diameter 98 mm was employed. The phantom was composed

of 8 structures representing adipose tissues, parenchymal breast tissues, cysts, benign tumors, and

malignant tumors, as shown in Fig. 2. For simplicity, the acoustic attenuation of all tissues was

described by a power law with a fixed exponent y = 1.5 [43]. The corresponding sound speed

values and the attenuation coefficients are listed in TABLE I [43]–[45]. Both the sound speed

and the absorption coefficient distributions in Fig. 2 were sampled on a uniform Cartesian grid

with spacing ∆s = 0.25 mm. The finest structure (indexed by 7 in Fig. 2-(a)) was of diameter

3.75 mm.
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C. Simulation of the measurement data

1) First-order numerical wave equation solver: Acoustic wave propagation in acoustically

absorbing media was modeled by three coupled first-order partial differential equations [46]:

∂

∂t
u(r, t) = −∇p(r, t) (17a)

∂

∂t
ρ(r, t) = −∇ · u(r, t) + 4π

∫ t

0

dt′s(r, t′) (17b)

p(r, t) = c2(r)
[

1 + τ(r)
∂

∂t
(−∇2)y/2−1 + η(r)(−∇2)(y+1)/2−1

]

ρ(r, t), (17c)

where u(r, t), p(r, t), and ρ(r) denote the acoustic particle velocity, the acoustic pressure, and

the acoustic density, respectively. The functions τ(r) and η(r) describe acoustic absorption and

dispersion during the wave propagation respectively [46]:

τ(r) = −2α0(r)c0(r)
y−1, η(r) = 2α0(r)c0(r)

y tan(πy/2), (18)

where α0(r) and y are the absorption coefficient and the power law exponent respectively. When

the medium is assumed to be lossless, i.e., α0(r) = 0, it can be shown that Eqn. (17) is equivalent

to Eqn. (1).

Based on Eqn. (17), a pseudospectral k-space method was employed to simulate acoustic

pressure data [36], [46]. The numerical scheme will be referred to as a first-order numerical

solver. The first-order numerical solver was implemented using graphic processing units (GPUs).

The calculation domain was of size 512×512 mm2, sampled on a 2048×2048 uniform Cartesian

grid of spacing ∆s = 0.25 mm. A nearest-neighbor interpolation was employed to place all

transducers on the grid points. On a platform consisting of dual quad-core CPUs with a 3.30 GHz

clock speed, 64 gigabytes (GB) of random-accessing memory (RAM), and a single NVIDIA Tesla

K20 GPU, the first-order numerical solver took 108 seconds to complete one foward simulation.

2) Acoustic excitation pulse: The excitation pulse employed in this study was assumed to be

spatially localized at the emitter location while temporally it was a fc = 0.8 MHz sinusoidal

function tapered by a Gaussian kernel with standard deviation σ = 0.5 µs, i.e.,

sm(r, t) =

⎧

⎨

⎩

exp
(

− (t−tc)2

2σ2

)

sin(2πfct), at the m-th emitter location

0, otherwise.
(19)

The temporal profile and the amplitude frequency spectrum of the excitation pulse are plotted

in Fig. 3-(a) and -(b), respectively. The excitation pulse contained approximate 3 cycles.
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3) Generation of non-attenuated and attenuated noise-free data: For every data acquisition,

indexed by m, the first-order numerical wave equation solver was run for 3600 time steps with

a time interval ∆t = 0.05µs (corresponding to a 20 MHz sampling rate). Downsampling the

recorded data by taking every other time sample resulted in a data vector, i.e., gm in Eqn. (9), that

was effectively sampled at 10 MHz and was of dimensions ML with M = 256 and L = 1800.

The data vector at the 0-th data acquisition, g0, is displayed as a 2D image in Fig. 4-(a). This

undersampling procedure was introduced to avoid inverse crime [47] so that the data generation

and the image reconstruction employed different numerical discretization schemes. Repeating the

calculation for m = 0, 1, · · · , 255, we obtained a collection {gm} of data vectors that together

represented one complete data set. Utilizing the absorption phantom described in Section IV-B,

a complete attenuated data set was computed. An idealized, non-attenuated, data set was also

computed by setting α0(r) = 0.

4) Generation of incomplete data: An incomplete data set in this study corresponds to one

in which only N rec receivers located on the opposite side of the emitter record the pressure

wavefield, with N rec < M . Taking the 0-th data acquisition as an example (see Fig. 1), only

N rec = 100 receivers, indexed from 78 to 177, record the wavefield, while other receivers record

either unreliable or no measurements. Incomplete data sets formed in this way can emulate two

practical scenarios: (1) Signals recored by receivers near the emitter are unreliable and therefore

discarded [23]; and (2) An arc-shaped transducer array is employed that rotates with the emitter

[14], [15], [48].

Specifically, incomplete data sets were generated as

[

gincpl
m

]

nrecL+l
=

[

gm

]

Jm(nrec)L+l
, for m=0,1,··· ,M−1

nrec=0,1,··· ,Nrec−1, (20)

where gincpl
m is the incomplete m-th data acquisition, which is of dimensions N recL, with N rec <

M . The index map Jm : {0, 1, · · · , N rec − 1} "→Mgood
m is defined as

Jm(n
rec) =

(

m+ nrec +
M −N rec

2

)

mod M, (21)

where (m′ mod M) calculates the remainder of m′ divided by M , and the index set Mgood
m

collects indices of transducers that reliably record data at the m-th data acquisition and is defined

as

M
good
m =

{

k mod M
∣

∣k ∈
[

m+ (M −N rec)/2, m+ (M +N rec)/2
)

}

. (22)
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Here, for simplicity, we assume both M and N rec to be even numbers. In this study, we

empirically set N rec = 100 so that the object can be fully covered by the fan region as shown

in Fig. 1.

5) Generation of noisy data: An additive Gaussian white noise model was employed to

simulate electronic measurement noise as

g̃m = gm + ñ, (23)

where g̃m and ñ are the noisy data vector and the Gaussian white noise vector, respectively. In

this study, the maximum value of the pressure received by the 128-th transducer at the 0-th data

acquisition with a homogeneous medium (water tank) was chosen as a reference signal amplitude.

The noise standard deviation was set to be 5% of this value. An example of a simulated noiseless

and noisy data acquisition is shown Fig. 4.

D. Image reconstruction

1) Second-order numerical wave equation solver: In the reconstruction methods described

below, the action of the operator Hc (Eqn. (5)) was computed by solving Eqn. (1) by use of

the pseudospectral k-space numerical solver method. This was implemented using GPUs. The

calculation domain was of size 512 × 512 mm2, sampled on a 1024 × 1024 uniform Cartesian

grid of spacing ∆s = 0.5 mm for reconstruction. On a platform consisting of dual octa-core

CPUs with a 2.00 GHz clock speed, 125 GB RAM, and a single NVIDIA Tesla K20C GPU,

the second-order numerical solver, took 7 seconds to complete one forward simulation.

2) Sequential waveform inversion: To serve as a reference for the WISE method, we imple-

mented the sequential waveform inversion method described in Algorithm 1. No penalty term

was included (β = 0) because, due to its extreme computational burden, we only investigated

this method in preliminary studies involving noise-free non-attenuated data. A uniform sound

speed distribution was employed as the initial guess. We assumed that the background sound

speed was known and the object was contained in a square region-of-interest (ROI) of dimension

128× 128 mm2 (See Fig. 1), which corresponded to 256× 256 pixels.

3) WISE method: We implemented the WISE method according to Algorithm 2. Two types

of smoothness penalties were employed in this study: a quadratic penalty expressed as

RQ(c) =
∑

j

∑

i

([c]jNx+i − [c]jNx+i−1)
2 + ([c]jNx+i − [c](j−1)Nx+i)

2, (24)
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where Nx and Ny denote the number of grid points along the ‘x’ and ‘y’ directions respectively,

and a total variation (TV) penalty, defined as [49], [50]

RTV(c) =
∑

j

∑

i

√

ϵ+ ([c]jNx+i − [c]jNx+i−1)2 + ([c]jNx+i − [c](j−1)Nx+i)2, (25)

where ϵ is a small number introduced to avoid dividing by 0 in the gradient calculation. In this

study, we empirically selected ϵ = 10−8. The value was fixed because we observed that the value

of ϵ had a minor impact on the reconstructed images compared to the impact of β. In addition,

the use of this parameter can be avoided when advanced optimization algorithms are employed

[51]. As in the sequential waveform inversion case, it was assumed that the background sound

speed was known and the object was contained in a square ROI of dimension 128×128 mm2 (See

Fig. 1), which corresponded to 256 × 256 pixels. The regularization parameters corresponding

to the quadratic penalty and the TV penalty will be denoted by βQ and βTV, respectively.

Optimal regularization parameter values depend on the specific medically relavent task that the

reconstructed images are used for [37]. Estimation of the optimal values requires a systematic

investigation of the image statistics, which is out of the scope of this study. Here, we only

investigated the impacts of βQ and βTV on the reconstructed images by sweeping their values

over a wide range.

4) Reconstruction from incomplete data: Because the WISE method requires Mm to be

identical for all m’s, image reconstruction from incomplete data remains challenging [30], [33],

[41]. In this study, two data completion strategies were investigated [30], [33], [41] to synthesize

a complete data set, from which the WISE method could be effectively applied.

One strategy was to fill the missing data with pressure corresponding to a homogeneous

medium as

[gcombH
m ]mrecL+l =

⎧

⎨

⎩

[gincpl
m ]J−1

m (mrec)L+l, if mrec ∈Mgood
m

[gh
m]mrecL+l, otherwise,

(26)

for mrec = 0, 1, · · · ,M − 1, where gh
m ∈ RML, gincpl

m ∈ RNrecL, and gcombH
m ∈ RML, denote the

computer-simulated (with a homogeneous medium), the measured incomplete, and the combined

complete data vectors at the m-th data acquisition, respectively. The mapping J −1
m : Mgood

m $→

{0, 1, · · · , N rec − 1} denotes the inverse operator of Jm as

J −1
m (mrec) =

⎧

⎨

⎩

mrec −m− M−Nrec

2 , if M−Nrec

2 ≤ mrec −m < M+Nrec

2

mrec −m+ M+Nrec

2 , if −M−Nrec

2 ≤ mrec −m < −M+Nrec

2 .
(27)
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This data completion strategy is based on the assumption that the back-scatter from breast tissue

in an appropriately sound speed-matched water bath is weak. This assumption suggests that the

missing measurements can be replaced by the corresponding pressure data that would have been

produced in the absence of the object.

The second, more crude, data completion strategy was to simply fill the missing data with

zeros, i.e.,

[gcomb0
m ]mrecL+l =

⎧

⎨

⎩

[gincpl
m ]J−1

m (mrec)L+l, if mrec ∈Mgood
m

0, otherwise,
(28)

where gcomb0
m denotes the data completed with the second strategy.

5) Bent-ray image reconstruction: A bent-ray method was also employed to reconstruct im-

ages. Details regarding the time-of-flight estimation and algorithm implemenations are provided

in Appendix C.

V. COMPUTER-SIMULATION RESULTS

A. Images reconstructed from idealized data

The images reconstructed from the noise-free, non-attenuated, data by use of the WISE method

with 199 iterations and the sequential waveform inversion method with 43 iterations are shown

in Fig. 5-(a) and (b). As expected [23], [52], both images are more accurate and possess higher

spatial resolution than the one reconstructed by use of the bent-ray reconstruction algorithm

displayed in Fig. 5-(c). Profiles through the reconstructed images are displayed in Fig. 6. The

images shown in Fig. 5-(a) and -(b) possess similar accuracies as measured by their Euclidean

distances from the sound speed phantom vector c; namely 0.07% of ∥c∥ for the former and

0.08% of ∥c∥ for the latter. However, the reconstruction of Fig. 5-(a) required only about 1.7%

of the computational time required to reconstruct Fig. 5-(b); namely, 1.4 hours for the former

and 81.4 hours for the latter respectively. This is because the WISE method required only

1018 numerical solver runs which is signficantly less than the 57088 numerical solver runs

required by the sequential waveform inversion method. With a similar number of numerical

solver runs, (e.g., 1024), one can only complete a single algorithm iteration by use of the

sequential waveform inversion method. The corresponding image, shown in Fig. 5-(d), lacks

quantitative accuracy as well as qualitative value for identifying features. The results suggest
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that the WISE method maintains the advantages of the sequential waveform inversion method

while significantly reducing the computational time.

B. Convergence of the WISE method

Images reconstructed from noise-free, non-attenuated, data by use of the WISE method contain

radial streak artifacts when the algorithm iteration number is less than 100, as shown in Figs. 7-

(a-c). Profiles through these images are displayed in 8. The streaks artifacts are likely caused by

crosstalk introduced during the source encoding procedure [31], [40]. However, these artifacts

are effectively mitigated after more iterations as demonstrated by the image reconstructed after

the 199-th iteration in Fig. 5-(a) and its profile in Fig. 6. The quantitative accuracy of the

reconstructed images is improved with more iterations as shown in Fig. 8.

Figure 9-(a) reveals that the WISE method requires a larger number of algorithm iterations

than does the sequential waveform inversion method to achieve the same reconstruction accuracy,

quantified by the Euclidean distance of the reconstructed image in percentage of ∥c∥. Also, the

Euclidean distance of the reconstructed images by use of the WISE method appears to oscillate

around 0.08% of ∥c∥ after the first 100 iterations while the sequential waveform inversion method

can achieve a higher accuracy. However, as shown in Fig. 5-(a), the image reconstructed by

use of the WISE method is highly accurate after the 199-th iteration. Moreover, to achieve

the same accuracy, the amount of computation for the WISE method is about two-order of

magnitude smaller than that for the sequential waveform inversion method as suggested by

Fig. 9-(b). This is because of the significant computation reduction per iteration when the WISE

method is employed. We also plotted the cost function value against the number of iterations

in Fig. 9-(c). Note that for the WISE method, the cost function value was approximated by the

current realization of 1
2∥g

w −MHcsw∥2. These plots suggest that, in this particular case, the

WISE method appears to approximately converge after 200 iterations. For example, the images

reconstructed after 199 (Fig. 5-(a)) and 250 (Fig. 7-(d)) iterations are nearly identical.

C. Images reconstructed from non-attenuated data containing noise

Images reconstructed by use of the WISE method with a quadratic penalty and the WISE

method with a TV penalty from noisy, non-attenutated, data are presented in Fig. 10. All

images were obtained after 1024 algorithm iterations. The WISE method with a quadratic penalty
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effectively mitigates image noise as shown in Figs. 10-(a-c), at the expense of image resolution,

as expected. Figure 10-(d) shows an image reconstructed by use of the WISE method with a

TV penalty. The image appears to possess a similar resolution but a lower noise level than

the image in Fig. 10-(b) that was reconstructed by use of the WISE method with a quadratic

penalty.

D. Images reconstructed from acoustically attenuated data

Our current implementation of the WISE method assumes an absorption-free acoustic medium.

This assumption can be strongly violated in practice. In order to investigate the robustness of

the the WISE method to model errors associated with ignoring medium acoustic absorption,

we applied the algorithm to the acoustically attenuated data that were produced as described

in Section IV-C. As shown in Fig. 11, when the medium acoustic absorption is considered, the

amplitude of the measured pressure is attenuated by approximately a factor of 2. The wavefront

(See Fig. 11-(a)) remains very similar to that when medium absorption is ignored (See Fig. 4-

(a)). Medium absorption has the largest impact on the pressure data received by transducers

located opposite the emitter as shown in Fig. 11-(b). The shape of the pulse profile remains

very similar as shown in Fig. 11-(c) and -(d), suggesting that waveform dispersion may be less

critical than amplitude attenuation in image reconstruction for this phantom.

Images reconstructed by use of the WISE method with a TV penalty from noise-free and

noisy attenuated data are shown in Figs. 12-(a) and (b). Image profiles are shown in Fig. 12-(c).

Although these images contain certain artifacts that were not produced in the idealized data

studies, most object structures remain readily identified. These results suggest that the WISE

method with a TV penalty can tolerate data inconsistencies associated with neglecting acoustic

attenuation in the imaging model, at least to a certain level with regards to feature detection

tasks.

E. Images reconstructed from idealized incomplete data

The wavefront of the noise- and attenuation-free pressure wavefield when the object is absent

(Fig. 13-(a)) appears to be very similar to that when the object is present (Fig. 4-(a)). As

expected, the largest differences are seen in the signals received by the transducers located

opposite of the emitter, as shown in Fig. 13-(b). As seen in Fig. 13-(c), the time traces received
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by the 40-th transducer are nearly identical when object is present and absent. This is because

the back-scattered wavefield is weak for breast imaging applications. These results suggest the

potential efficacy of the data completion strategy of filling the missing data with the pressure

data corresponding to a water bath.

The image reconstructed from the measurements completed with pressure data corresponding

to a water bath is shown in Fig.14-(a). As revealed by the profile in Fig.14-(c), this image is

highly accurate. Alternatively, the image reconstructed from the the data completed with zeros

contains strong artifacts as shown in Fig. 14-(b). These results suggest that the WISE method can

be adapted to reconstruct images from incomplete data, which is particularly useful for emerging

laser-induced USCT imaging systems [14]–[16].

VI. EXPERIMENTAL VALIDATION

A. Data acquisition

The SoftVue scanner was employed in the experimental study [53]. The scanner contained

a ring-shaped transducer array of radius 110 mm. 2048 detecting elements were uniformly

distributed on the ring. Each element had a center frequency of 2.75 MHz and a pitch of

0.34 mm. Each element was elevationally focused to isolate a slice of 3 mm in thickness. The

transducer array was mounted in a water tank and could be translated with a motorized gantry

in the vertical direction. We refer the readers to [53] for more details about the USCT imaging

system.

The breast phantom was built by Dr. Ernie Madsen from the University of Wiscosin and

provides tissue-equivalent scanning characteristics of highly scattering, predominantly parenchy-

mal breast tissue. The phantom mimics the presence of benign and cancerous masses embedded

in glandular tissue, including a subcutaneous fat layer. Figure 15 is a schematic plot of one

phantom slice. The diameter of the inclusions is approximately 12 mm. Table II presents the

known acoustic properties of the phantom.

During data acquisition, the breast phantom was placed near the center of the ring-shaped

transducer array so that the distance between the phantom and each transducer was approximately

the same. While scanning each slice, every other transducer element sequentially emits fan beam

ultrasound signals towards the opposite side of the ring. The forward scattered and backscattered

ultrasound signals are subsequently recorded by the same transducer elements. The received
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waveform was sampled at a rate of 12 MHz. The 1024 data acquisitions took about 20 seconds

in total. A calibration data set was also acquired with water bath only.

B. Data pre-processing

48 bad channels were manually identified by visual inspection. After discarding these, the

data set contained M = 976 acquisitions. Each acquisition contained N rec = 976 time traces.

Each time trace contained L = 2112 time samples. The 976 good channels were indexed from

0 to 975. The corresponding data acquisitions were indexed in the same way. A Hann-window

low-pass filter with a cutoff frequency of 4 MHz was applied to every time trace in both the

calibration and the measurement data. This data filtering was implemented to mitigate numerical

errors that could be introduced by our second-order numerical solver.

C. Estimation of excitation pulse

The shape of the excitation pulse was estimated as the time trace of the calibration data (after

pre-processing) received by the 488-th receiver at the 0-th data acquisition. Note that the 488-th

receiver was approximated located on the axis of the 0-th emitter, thus the received pulse was

minimally affected by the finite aperture size effect of the transducers. Because our calibration

data and measurement data were acquired using different electronic amplifier gains, the amplitude

of the excitation pulse was estimated from the measurement data. More specifically, we simulated

the 0-th data acquisition using our second-order numerical solver and compared the simulated

time trace received by the 300-th receiver with the corresponding measured time trace (after pre-

processing). The ratio between the maximum values of these two traces was used to scale the

excitation pulse shape. We selected the 300-th receiver because it resided out of the fan-region

indicated in Fig. 1; its received signals were unlikely to be strongly affected by the presence of

the object. The estimated excitation pulse and its amplitude spectrum are displayed in Fig. 16.

Note that the experimental excitation pulse contained higher frequency components than did the

computer-simulated excitation pulse shown in Fig. 3.

D. Synthesis of combined data

As discussed in Section IV-C4, signals received by receivers located near the emitter can be

unreliable [23]. Our experimental data, as shown in Fig. 17-(a), contained noise-like measure-

ments for the receivers indexed from 0 to 200, and from 955 to 975, in the case where the 0-th
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transducer functioned as the emitter. Also, our point-like transducer assumption introduces larger

model mismatches for the receivers located near the emitter. As shown in Figs. 17-(c) and -(d),

even though the simulated time trace received by the 300-th receiver matches accurately with

the experimentally measured one, the simulated time trace received by the 200-th receiver is

substantially different compared with the experimentally measured one. In order to minimize the

effects of model mismatch, we replaced these unreliable measurements with computer-simulated

water bath data, as described in Section IV-C. We designated the time traces received by the

512 receivers located on the opposite side of the emitter as the reliable measurements for each

data acquisition. The 0-th data acquisition of the combined data is displayed in Fig. 17-(b).

E. Estimation of initial guess

The initial guess for the WISE method was obtained by use of the bent-ray reconstruction

method described in Appendix C. We first filtered each time trace of the raw data by a band-

pass butterworth filter (0.5MHz - 2.5MHz). Subsequently, we extracted the TOF by use of the

thresholding method with a thresholding value of 20% of the peak value of each time trace.

The bent-ray reconstruction algorithm was applied for image reconstruction with a measured

background sound speed 1.513 mm/µs. The resulting image is shown in Fig. 18-(a) and has a

pixel size of 1 mm. Finally, the image was smoothed by convolving it with a 2D Gaussian kernel

with a standard deviation of 2 mm.

F. Image reconstruction

We applied the WISE method with a TV penalty to the combined data set. The second-order

numerical solver was employed with a calculation domain of dimensions 512.0 × 512.0 mm2.

The calculation domain was sampled on a 2560 × 2560 Cartesian grid with a grid spacing of

0.2 mm. On a platform consisting of dual quad-core CPUs with a 3.30 GHz clock speed, 64

GB RAM, and a single NVIDIA Tesla K20 GPU, each numerical solver run, took 40 seconds

to calculate the pressure data for 2112 time samples. Knowing the size of the phantom, we set

the reconstruction region to be within a circle of diameter 128 mm, i.e., only the sound speed

values of pixels within the circle were updated during the iterative image reconstruction. We

swept the value of βTV over a wide range to investigate its impact on the reconstructed images.
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G. Images reconstructed from experimental data

As shown in Fig. 18, the spatial resolution of the image reconstructed by use of the WISE

method with a TV penalty is significantly higher than that reconstructed by use of the bent-ray

model-based method. In particular, the structures labeled ‘A’ and ‘B’ possess clearly-defined

boundaries. This observation is further confirmed by the profiles of the two images shown in

Fig. 19. In addition, the structure labeled ‘C’ in Fig. 18-(b) is almost indistinguishable in the

image reconstructed by use of the bent-ray model-based method (see Fig. 18-(a)). The improved

spatial resolution is expected because the WISE method with a TV penalty takes into account the

high-order diffraction, which is ignored by the bent-ray method [23]. Though not shown here,

for the bent-ray method, we investigated multiple time-of-flight pickers [25], and systematically

tuned the regularization parameter. As such, it is likely that Fig. 18-(a) represents a nearly optimal

bent-ray image in terms of the resolution. This resolution also appears to be similar to previous

experimental results reported in the literature [26].

The convergence properties of the WISE method with a TV penalty with experimental data

were consistent with those observed in the computer-simulation studies. Images reconstructed by

use of 10, 50, and 300 algorithm iterations are displayed in Fig. 20. The image reconstructed by

use of 10 iterations contains radial streak artifacts that are similar in nature to those observed in

the computer-simulation studies. These artifacts were mitigated after more iterations. The image

reconstructed after 300 iterations (Fig. 20-(d)) appears to be similar to that after 200 iterations

(Fig. 18-(b)), suggesting that the WISE method with a TV penalty is close to convergence after

about 200 iterations. The computational time for completing 200 iterations was approximately

14 hours. The estimated computational time for the conventional method was about one month,

assuming the same number of iterations is required as in the computer-simulation studies (i.e.,

40).

Despite the nonlinearity of the WISE method with a TV penalty, the impact of the TV

smoothness penalty appears to be similar to that observed in other imaging applications [51],

[54] (see Fig. 21). Though not shown here, the impact of the quadratic penalty is also similar.

As expected, a larger value of β reduced the noise level at the expense of spatial image

resolution. These results suggest a predictable impact of the smoothness penalties on the images

reconstructed using the WISE method with a TV penalty.
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VII. SUMMARY

It is known that waveform inversion-based reconstruction methods can produce sound speed

images that possess improved spatial resolution properties over those produced by ray-based

methods. However, waveform inversion methods are computationally demanding and have not

been applied widely in USCT breast imaging. In this work, based on the time-domain wave

equation and motivated by recent mathematical results in the geophysics literature, the WISE

method was developed that circumvents the large computational burden of conventional wave-

form inversion methods. This method encodes the measurement data using a random encoding

vector and determines an estimate of the sound speed distribution by solving a stochastic opti-

mization problem by use of a stochastic gradient descent algorithm. With our current GPU-based

implementation, the computation time was reduced from weeks to hours. The WISE method was

systematically investigated in computer-simulation and experimental studies involving a breast

phantom. The results suggest that the method holds value for USCT breast imaging applications

in a practical setting.

Many opportunities remain to further improve the performance of the WISE method. As shown

in Fig. 18, images reconstructed by use of the WISE method can contain certain artifacts that

are not present in the image reconstructed by use of the bent-ray method. An example of such

an artifact is the dark horizontal streak below the structure C. Because of the nonlinearilty of the

image reconstruction problem, it is challenging to determine whether these artifacts are caused

by imaging model errors or by the optimization algorithm, which might have arrived at a local

minimum of the cost function. A more accurate imaging model can be developed to account for

the out-of-plane scattering, the transducer finite aperture size effect, and the medium acoustic

absorption, etc. Also, the stochastic gradient descent algorithm is one of the most basic stochastic

optimization algorithms. Numerous emerging optimization algorithms can be employed [33], [41]

to improve the convergence rate, as well as to avoid local minima.

There remains a need to conduct additional investigations of the numerical properties of the

WISE method. Currently, a systematic comparsion of the statistical properties of the WISE and

the sequential waveform inversion methods is prohibted by the 3-day computational time for

the latter method. This comparsion will be interesting when a more efficient numerical solver is

available. Given the fact that waveform inversion is nonlinear and sensitive to its initial guess,
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it becomes important to investigate how to obtain an accurate and computationally efficient

initial guess. We also observed that the performance of the WISE method is sensitive to how

strong the medium heterogeneities are and the profile of the excitation pulse. Investigation of the

impact of the excitation pulse on the image reconstruction may help optimize hardware design.

In addition, exploring the statistics of the reconstructed images will allow a quantitative image

quality assessment for cancer diagnosis.

APPENDIX A

CONTINUOUS-TO-DISCRETE USCT IMAGING MODEL

In practice, each data function gm(r, t) is spatially and temporally sampled to form a data

vector gm ∈ RNrecL, where N rec and L denote the number of receivers and the number of time

samples, respectively. We will assume that N rec and L do not vary with excitation pulse. Let

[gm]nrecL+l denotes the (nrecL + l)-th element of gm. When the receivers are point-like, gm is

defined as

[gm]nrecL+l = gm(r(m,nrec), l∆t), (29)

where the indices nrec and l specify the receiver location and temporal sample, respectively, and

∆t is the temporal sampling interval. The vector r(m,nrec) ∈ Ωm denotes the location of the

nrec-th receiver at the m-th data acquisition.

A C-D imaging model for USCT describes the mapping of c(r) to the data vector gm and

can be expressed as

[gm]nrecL+l = MmH
csm(r, t)

∣

∣

r=r(m,nrec),t=l∆t
for nrec=0,1,··· ,Nrec−1

l=0,1,··· ,L−1 . (30)

Note that the acousto-electrical impulse response of the receivers can be incorporated into the

C-D imaging model by temporally convolving sm(r, t) in Eqn. (1) with the receivers’ acousto-

electrical impulse response if we assume all receiving transducers share an identical acousto-

electrical impulse response.

APPENDIX B

FRÉCHET DERIVATIVE OF DATA FIDELITY TERM

Consider the integrated squared-error data misfit function, [22], [23]

FCC(c) =
1

2

M−1
∑

m=0

∫

Ωm

dr

∫ T

0

dt
[

gm(r, t)− gm(r, t)
]2
, (31)
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where gm(r, t) and gm(r, t) denote the measured data function and the predicted data function

computed by use of Eqn. (3) with the current estimate of c(r).

Both the sequential and WISE reconstruction method described in Section III require knowl-

edge of the Fréchet derivatives of FCC(c) and RCC(c) with respect to c, denoted by ∇cFCC

and ∇cRCC, respectively. The calculation of ∇cRCC can be readily accomplished for quadratic

smoothness penalties [51], [55]. For the integrated squared error data misfit function given in

Eqn. (31), ∇cFCC can be computed via an adjoint state method as [28], [56], [57]

∇cF
CC =

1

c3(r)

M−1
∑

m=0

∫ T

0

dt qm(r, T − t)
∂2

∂2t
pm(r, t), (32)

where qm(r, t) ∈ L2(R3× [0,∞)) is the solution to the adjoint wave equation. The adjoint wave

equation is defined as

∇2qm(r, t)−
1

c2(r)

∂2

∂2t
qm(r, t) = −τm(r, t), (33)

where τm(r, t) = gm(r, T − t)− gm(r, T − t). The adjoint wave equation is nearly identical in

form to the wave equation in Eqn. (1) except for the different source term on the right-hand

side, suggesting the same numerical approach can be employed to solve both equations. Since

one needs to solve Eqns. (1) and (33) M times in order to calculate ∇cFCC, it is generally true

that the sequential waveform inversion is computationally demanding even for a 2D geometry

[58].

APPENDIX C

BENT-RAY MODEL-BASED SOUND SPEED RECONSTRUCTION

We developed an iterative image reconstruction algorithm based on a bent-ray imaging model.

The bent-ray imaging model assumes that an acoustic pulse travels along a ray path that connects

the emitter and the receiver and accounts for the refraction of rays, also known as ray-bending,

through an acoustically inhomogeneous medium. For each pair of receiver and emitter, the travel

time, as well as the ray path, is determined by the medium’s sound speed distribution. Given

the travel times for a collection of emitter-and-receiver pairs distributed around the object, the

medium sound speed distribution can be iteratively reconstructed. This bent-ray model-based

sound speed reconstruction (BRSR) method has been employed in the USCT literature [26],

[59], [60].
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In order to perform the BRSR, we extracted a TOF data vector from the measured pressure

data. Denoting the TOF data vector by T ∈ RMNrec

, each element of T represented the TOF

from each emitter-and-receiver pair. The extraction of the TOF was conducted in two steps. First,

we estimated the difference between the TOF when the object was present and the TOF when

the object was absent by use of a thresholding method [25], [61]. In particular, 20% of the peak

value of each time trace was employed as the thresholding value. Second, a TOF offset was

added to the estimated difference TOF for each emitter-and-receiver pair to obtain the absolute

TOF, where the TOF offset was calculated according to the scanning geometry and the known

background SOS.

Having the TOF vector T, we reconstructed the sound speed by solving the following opti-

mization problem:

ŝ = argmin
s

∥ T−Kss ∥2 +βR(s), (34)

where s denotes the slowness (the reciprocal of the SOS) vector, and Ks denotes the system

matrix that maps the slowness distribution to the TOF data. The superscript ‘s’ indicates the

dependence of Ks on the slowness map. At each iteration, using the current estimate of the SOS,

a ray-tracing method [62] was employed to construct the system matrix Ks. Explicitly storing

the system matrix in the sparse representation, we utilized the limited BFGS method [63] to

solve the optimization problem given in Eqn. (34). The estimated slowness was then converted

to the sound speed by taking the reciprocal of ŝ element-wisely. We refer the readers to [26],

[59]–[61], [64] for more details about the BRSR method.
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TABLES

TABLE I: Parameters of the numerical breast phantom

Structure Tissue type Sound speed Slope of attenuation

index [mm·µs−1] [dB·(MHz)−y
·cm−1]

0 Adipose 1.47 0.60

1 Parenchyma 1.51 0.75

2 Benign tumor 1.47 0.60

3 Benign tumor 1.47 0.60

4 Cyst 1.53 0.00217

5 Malignant tumor 1.565 0.57

6 Malignant tumor 1.565 0.57

7 Malignant tumor 1.57 0.57
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TABLE II: Parameters of the experimental breast phantom

Material Sound speed Attenuation coefficient

[mm·µs−1] at 2.5 MHz [dB/cm]

Fat 1.467 0.48

Parenchymal tissue 1.552 0.89

Cancer 1.563 1.20

Fibroadenoma 1.552 0.52

Gelatin cyst 1.585 0.16
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Fig. 1: Schematic of a USCT system with a circular transducer array whose elements are

indexed from 0 to 255. It shows the first data acquisition, where element-0 (in red) is emitting

an acoustic pulse, while all 256 elements are receiving signals. The region-of-interest (ROI) is

shaded in gray, and the dashed square box represents the physical dimensions (128× 128 mm2)

of all reconstructed images.
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Fig. 2: (a) Sound speed map [mm·µs−1] and (b) acoustic absorption coefficient map

[dB·(MHz)−y·cm−1] of the numerical breast phantom.
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Fig. 3: (a) Normalized temporal profile and (b) amplitude spectrum of the excitation pulse

employed in the computer-simulation studies. The dashed line in (b) marks the center frequency

of excitation pulse at 0.82 MHz.
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Fig. 4: Computer-simulated (a) noise-free and (b) noisy data vectors at the 0-th data acquisition.

(c) Profiles of the pressure received by the 128-th transdcuer. The grayscale window for (a) and

(b) is [−45, 0] dB.
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Fig. 5: Images reconstructed by use of (a) the WISE method after the 199-th iteration (1, 018 runs

of the numerical solver), (b) the sequential waveform inversion algorithm after the 43-rd iteration

(57, 088 runs of the numerical solver), (c) the bent-ray model-based sound speed reconstruction

method, and (d) the sequential waveform inversion algorithm after the 1-st iteration (1, 024

runs of the numerical solver) from the noise-free non-attenuated data. The grayscale window is

[1.46, 1.58] mm/µs.
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Fig. 6: Profiles at y = 6.5 mm of the images reconstructed by use of the bent-ray TOF image

reconstruction method and the WISE method from the noise-free non-attenuated data.
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Fig. 7: Images reconstructed by use of the WISE method after (a) the 20-th, (b) the 50-th, (c) the

100-th, and (d) the 250-th iteration from the noise-free, non-attenuated data set. The grayscale

window is [1.46, 1.58] mm/µs.
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Fig. 8: Profiles of the images reconstructed by use of the WISE method from the noise-free

non-attenuated data after different numbers of iterations.
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(c)

Fig. 9: Plots of the absolute Euclidean distances versus (a) the number of iterations and (b)

the number of numerical solver runs. (c) Plots of the cost function value versus the number of

iterations.
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Fig. 10: Images reconstructed from non-attenuated data contaminated with Gaussian random

noise. Images (a-c) were reconstructed by use of the WISE method with a quadratic penalty

with βQ = 1.0× 10−3, 1.0× 10−2, and 1.0× 10−1, respectively. Image (d) was reconstructed by

use of the WISE method with a TV penalty with βTV = 5.0× 10−4. The insert in the up right

corner of each image is the zoomed-in image of the dashed black box. The grayscale window

is [1.46, 1.58] mm/µs.
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Fig. 11: (a) Computer-simulated noise-free attenuated pressure of the 0-th data acquisition.

(b) The difference between the attenuated pressure data and the non-attenuated pressure data.

(c) The temporal profiles and (d) the amplitude spectra of the pressure received by the 128-th

transducer. The grayscale window for (a) and (b) is [−45, 0] dB.
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Fig. 12: (a) Image reconstructed by use of the WISE method from the noise-free attenuated data.

(b) Image reconstructed by use of the WISE method with a TV penalty with βTV = 5.0× 10−4,

from the noisy attenuated data. The grayscale window is [1.46, 1.58] mm/µs. (c) Profiles at

y = 6.5 mm of the reconstructed images.
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Fig. 13: (a) Computer-simulated noise-free non-attenuated pressure data when the object is

absent. (b) The difference between the pressure data when object is present and the pressure

data when the object is absent. (c) Profiles of the pressure received by the 40-th transducer. The

grayscale window for (a) and (b) is [−45, 0] dB.
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Fig. 14: Images reconstructed by use of the WISE method from noise-free combined data that

are completed (a) with computer-simulated pressure corresponding to a homogeneous medium

and (b) with zeros. The grayscale window is [1.46, 1.58] mm/µs. (c) Profiles at y = 6.5 mm of

the images reconstructed by use of the WISE method from the two combined data sets.
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Fig. 15: Schematic of the breast phantom employed in the experimental study.
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Fig. 16: (a) Normalized temporal profile and (b) amplitude spectrum of the excitation pulse

employed in the experimental studies. The dashed line in (b) marks the center frequency of

excitation pulse at 2.09 MHz.
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Fig. 17: Zeroth acquisition of (a) the experimentally-measured raw data and (b) the combined

data, respectively, and time traces at the 0-th acquisition received by (c) the 300-th receiver, and

(d) the 200-th receiver, respectively. The grayscale window for (a) and (b) is [−45, 0] dB.
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Fig. 18: Images reconstructed from the experimentally measured phantom data by use of (a) the

bent-ray model-based sound speed reconstruction method and (b) the WISE method with a TV

penalty with (βTV = 1.0× 102) after the 200-th iteration. The grayscale window is [1.49, 1.57]

mm/µs.
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Fig. 19: Profiles at (a) x = −24.0 mm and (b) x = 10.0 mm of the reconstructed images by

use of the bent-ray model-based sound speed reconstruction method (light solid) and the WISE

method with a TV penalty with βTV = 1.0× 102 (dark dashed) from experimentally measured

data.
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Fig. 20: (a) The initial guess of the sound speed map and the images reconstructed by use of the

WISE method with a TV penalty with (βTV = 1.0 × 102) after (b) the 10-th, (b) the 50-th and

(d) the 300-th iteration, from the experimentally measured phantom data. The grayscale window

is [1.49, 1.57] mm/µs.
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Fig. 21: Images reconstructed by use of the WISE method with a TV penalty with (a) βTV =

5.0 × 101, and (b) βTV = 5.0 × 102, from the experimentally measured phantom data. The

grayscale window is [1.49, 1.57] mm/µs.
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